期刊文献+

不定方程 x 2 −kxy+k y 2 +dy=0的正整数解

The Positive Integer Solutions of the Diophantine Equation x 2 −kxy+k y 2 +dy=0
下载PDF
导出
摘要 本文研究了在d∈{3,5,7,11,13,17,19},k∈N∗时,不定方程x2−kxy+ky2+dy=0有无穷多个正整数解(x, y)当且仅当d = 3,k = 5, 6, 7;d = 5,k = 5, 7, 9;d = 7,k = 5, 8, 11;d = 11,k = 5, 6, 9, 10, 15;d = 13,k = 5, 11, 17;d = 17,k = 5, 7, 11, 13, 21;d = 19,k = 5, 11, 14, 23。在d为奇素数时,给出了不定方程x2−kxy+ky2+dy=0正整数解的一些必要条件。 In this paper, we study that atd∈{3,5,7,11,13,17,19},k∈N∗, the indefinite equationx2−kxy+ky2+dy=0has infinitely many positive integer solutions (x, y) when and only when d = 3, k = 5, 6, 7;d = 5, k = 5, 7, 9;d = 7, k = 5, 8, 11;d = 11, k = 5, 6, 9, 10, 15;d = 13, k = 5, 11, 17;d = 17, k = 5, 7, 11, 13, 21;d = 19, k = 5, 11, 14, 23. Some necessary conditions for positive integer solutions of the indefinite equationx2−kxy+ky2+dy=0are given when d is an odd prime.
作者 龚禹豪
机构地区 西华师范大学
出处 《应用数学进展》 2024年第6期2771-2779,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献3

二级参考文献24

  • 1MARLEWSKI A, MARZYCKI P. Infinitely many positive solution of the Diophantine equation x2 - kxy + y2 + x = 0 [J]. Comp & Math with Appl,2004(47) :115 -121.
  • 2YUAN Pingzhi, HU Yongzhong. On the Diophantine e- quation x2 - kxy + y2 + lx = 0,1∈ { 1,2,4 } [ J ]. Comp & Math with Appl, 2011 (61) -573 - 577.
  • 3华罗庚.数论导引[M].北京:科学出版社,1979..
  • 4Bellieud,M. Torsion effects in elastic composites with high contrast[J].SIAM Journal on Mathematical Analysis,2010,(06):2514-2553.
  • 5Braides,A,Garroni,A. Homogenization of nonlinear periodic media with stiff and soft inclusions[J].Mathematical Methods in the Applied Sciences,1995,(04):543-564.
  • 6Briane,M. Homogenization of the torsion problem and the Neumann problem in nonregular periodically perforated domains[J].Mathematical Methods in the Applied Sciences,1997,(06):847-870.
  • 7Cioranescu,D,Damlamian,A,Griso,G. Periodic unfolding and homogenization[J].Comptes Rendus de l'Académie des Sciences Paris Série I,2002.99-104.
  • 8Cioranescu,D,Damlamian,A,Griso,G. The periodic unfolding method in homogenization[J].SIAM Journal on Mathematical Analysis,2008,(04):1585-1620.
  • 9Cioranescu,D,Damlamian,A,Donato,P. The periodic unfolding method in domains with holes[J].SIAM Journal on Mathematical Analysis,2012,(02):718-760.
  • 10Cioranescu,D,Paulin,J.S.J. Homogenization in open sets with holes[J].Journal of Mathematical Analysis and Applications,1979.590-607.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部