期刊文献+

M B π R -矩阵线性互补问题解的误差界新估计

A New Estimate of Error Bounds for Solutions of M B π R -Matrix Linear Complementarity Problems
下载PDF
导出
摘要 基于线性互补问题的等价形式,结合不等式的放缩技巧,给出了MBπR-矩阵线性互补问题解的误差界新估计式。数值实例说明,该误差界改进了现有文献的有关结果。 Based on the equivalent form of the linear complementarity problem, the error bound for solutions ofMBπR-matrix linear complementarity problemsis obtained by combining the inequality scaling technique. Numerical examples show that this error bound improves the results of the existing literature.
出处 《应用数学进展》 2024年第7期3381-3391,共11页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献9

  • 1Li H B,Huang T Z,Li H. On some subclasses of matrices[J].Numer Linear Algebra App1,2007,(14):391-405.
  • 2Pe(n)a J M. A class of P-matrices with applications to the localization of the eigenvalues of a real matrix[J].{H}SIAM Journal on Matrix Analysis and Applications,2001,(22):1027-1037.
  • 3García-Esnaola M,Pe(n)a J M. Error bounds for linear complementarity problems for B-matrices[J].Applied Mathematics Letters,2009,(22):1071-1075.
  • 4Dai P F. Error bounds for linear complementarity problems for DB-matrices[J].{H}Linear Algebra and its Applications,2011,(434):830-840.
  • 5Neumann M,Pe(n)a J M,Pryporova O. Some classes of nonsingular matrices and applications[J].{H}Linear Algebra and its Applications,2011,(10):1041.
  • 6陈景良;陈向晖.特殊矩阵[M]{H}北京:清华大学出版社.
  • 7Li B,Tsatsomeros M. Doubly diagonally dominant matrices[J].Linear Appl,1997,(261):221-235.
  • 8Brualdi R,Ryser H. Combinatorial matrix theory,encyclopedia of mathematics and its applications[M].{H}Cambridge University Press,1991.
  • 9Pe(n)a J M. On an alternative to Ger(s)hgorin circles and ovals of Cassini[J].{H}NUMERISCHE MATHEMATIK,2003,(95):337-345.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部