期刊文献+

马鞍面上的多元Birkhoff插值问题研究

Study on Multivariate Birkhoff Interpolation of Saddle Surfaces
下载PDF
导出
摘要 以二元Birkhoff插值研究为基础,进一步研究了三维欧氏空间中马鞍面上的Birkhoff插值。首先给出了马鞍面上的多元Birkhoff插值相关定义,对插值条件组的拓扑结构进行了较为深入的研究,然后给出了构造多元函数插值适定泛函组的添加马鞍面法,最后给出具体实例进行验证。Based on the research of two-dimensional Birkhoff interpolation, this study further investigates Birkhoff interpolation on a saddle surface in three-dimensional Euclidean space. First, relevant definitions of multivariate Birkhoff interpolation on saddle surfaces are provided. An in-depth study of the topological structure of the interpolation condition set is conducted. Then, the method of adding saddle surface techniques to construct a suitable functional set for multi-variable function interpolation is introduced. Finally, specific examples are provided for verification.
出处 《应用数学进展》 2024年第11期4959-4965,共7页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献7

  • 1崔利宏.多元切触插值某些问题的研究[D].大连:大连理工大学应用数学系,2006.
  • 2LIANG Xue-zhang, LI Luo-qing. On Bivariate Osculatory Interpolation [ J]. Journal of Computer and Applied Mathematics, 1991,38: 271 - 282.
  • 3BORISLAR BOJANOV, XU Yuan. On Polynomial Interpolation of Two Variables [ J] .Journal of Approximation Theory,2003,120:267 - 282.
  • 4LORENTZ R A. Multivariate Birkhoff Interpolation [ M]. Number 1 516 in Lecture Notes in Mathematics. Berlin Heidelberg: Springe Verlag, 1992.
  • 5RUBIO J,DIAZ-BARRERO J L, RUBIO P. On the Solvability of the Birkhoff Interpolation Problem [ J ]. Journal of Approximation Theory, 2003,124:109 - 114.
  • 6WALKER R J. Algebraic Curves [ M]. Princeton, NJ: Princeton University Press, 1950.
  • 7梁学章,李强.多元逼近[M].北京:国防工业出版社,2005.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部