期刊文献+

动力学暗能量与中微子质量

Dynamical Dark Energy and Neutrino Mass
下载PDF
导出
摘要 随着天文观测技术的不断发展,暗能量的测量已经达到很高的精度。然而,人们对暗能量的本质属性、描述暗能量演化过程的标准宇宙学模型、以及暗能量模型中相互影响的宇宙学参数背后的物理等问题都亟待进一步的探究。目前,与观测实验结果最符合的暗能量模型是宇宙学常数模型,其他宇宙学模型也并没有被观测所排除。因此,构建不同的暗能量模型,分析模型参数的演化行为非常重要。本文介绍了参数化形式不同的动力学暗能量对中微子质量的影响,首次分析了Barbosa-Alcaniz参数化和Jassal-Bagla-Padmanabhan参数化后的暗能量与中微子质量间的关系。本文联合了三种重要的测量宇宙距离–红移关系的天文观测手段,包括Ia型超新星观测、重子声学振荡观测、宇宙微波背景辐射观测,对中微子宇宙学模型进行整体拟合,分析中微子质量和其他宇宙学参数的限制结果。与一般的Chevallier-Polarski-Linder参数化模型中的结果相比,Barbosa-Alcaniz参数化模型可提供一个较大的中微子质量,Jassal-Bagla-Padmanabhan参数化模型提供的中微子质量较小。暗能量状态方程参数的不同形式影响中微子质量的大小。 With the rapid development of astronomical observation technology, the measurement of dark energy has reached a high precision. However, it is urgent to further explore the properties of dark energy, the standard cosmological model that describes the evolution of dark energy, and the physics behind the cosmological parameters that interact with each other in dark energy models. At present, the most consistent dark energy model with observation experiment results is the cosmological constant model, and other cosmological models have not been excluded by observations. Therefore, it is very important to construct different dark energy models and analyze the evolutionary behavior of their model parameters. In this paper, we investigate the influence of different parametrizations of dynamical dark energy on neutrino mass, and analyze the relationship between dynamical dark energy and neutrino mass in the Barbosa-Alcaniz model and the Jassal Bagla-Padmanabhan model for the first time. In this paper, we combine three important astronomical observations that measure the relationship between cosmic distance and redshift, including the type Ia supernova observation, the baryon acoustic oscillations observation, and the cosmic microwave background observation. Overall fitting of neutrino cosmological models and analyze the fitting results of neutrino mass and other cosmological parameters. Compared to the results in the general Chevallier-Polarski-Linder model, the Barbosa-Alcaniz model provides a larger neutrino mass, and the Jassal-Bagla-Padmanabhan parametric model provides a smaller neutrino mass. The different parametrization of the equation of state of dark energy affects the neutrino mass.
出处 《天文与天体物理》 2024年第3期19-33,共15页 Astronomy and Astrophysics
  • 相关文献

参考文献7

  • 1Communications in Theoretical Physics[J].Communications in Theoretical Physics,2011,55(4). 被引量:2
  • 2张鑫.暗能量与宇宙加速膨胀之谜[J].科学,2017,69(1):57-60. 被引量:3
  • 3柴铮.暗物质与暗能量研究进展[J].科技视界,2016(26):350-350. 被引量:3
  • 4K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.REVIEW OF PARTICLE PHYSICS[J].Chinese Physics C,2014,38(9):1-4. 被引量:14
  • 5WANG Shuang,GENG JiaJia,HU YiLiang,ZHANG Xin.Revisit of constraints on holographic dark energy:SNLS3 dataset with the effects of time-varying β and different light-curve fitters[J].Science China(Physics,Mechanics & Astronomy),2015,58(1):150-160. 被引量:3
  • 6CUI JingLei,XU YueYao,ZHANG JingFei,ZHANG Xin.Strong gravitational lensing constraints on holographic dark energy[J].Science China(Physics,Mechanics & Astronomy),2015,58(11):68-74. 被引量:1
  • 7Tian-Ying Yao,Rui-Yun Guo,Xin-Yue Zhao.Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization[J].Journal of High Energy Physics, Gravitation and Cosmology,2023,9(4):1044-1061. 被引量:2

二级参考文献17

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部