期刊文献+

遥感时序去噪算法的系统评价

Systematic Evaluation of Remote Sensing Time Series Denoising Algorithm
下载PDF
导出
摘要 近年来,大批量煤矿开采已经严重破坏到矿区周围的生态环境,而新时代我国注重绿色发展,这就需要对矿区生态条件进行修复。修复生态可从分析研究该区域的植被覆盖度开始。NDVI时间序列数据是目前最常用的数据源之一,其在全球气候环境变化、植被覆盖动态变化检测、植被信息提取等方面具有广泛应用。但由于传感器、云层覆盖等因素影响,NDVI时序数据比一般数据更容易出现噪声,因此时序数据去噪显得至关重要。文章以宝日希勒矿区为研究区,从目视判别时序曲线、对比去噪样本点的去噪均方根误差、以及变化检测结果精度分析三个角度,在matlab编程软件以及ENVI软件的帮助下,实现这三种去噪算法,并对比分析这3种方法的优点和缺点。研究结果表明:1) 3种去噪算法都有效地对原始NDVI时序数据进行了去噪,且效果明显;2) 不同的去噪方法均存在着过度拟合的现象;3) 对于文章所选的NDVI最大合成数据而言,B-W去噪效果最好,其次是去噪效果一般的BISE算法,S-G算法的去噪效果最差。In recent years, large-scale coal mining has seriously damaged the ecological environment around the mining area. In the new era, China pays attention to green development, which requires the restoration of the ecological conditions of the mining area. Ecological restoration can start from analyzing the vegetation coverage of the area. NDVI time series data is one of the most commonly used data sources at present. It has been widely used in global climate and environmental change, dynamic change detection of vegetation cover, vegetation information extraction and so on. However, due to the influence of sensors, cloud cover and other factors, NDVI time series data are prone to noise, so data denoising is very important. Taking Baorixile mining area as the research area, this paper realizes these three denoising algorithms under Matlab programming software from three angles: visual discrimination of time series curve, comparison of denoising root mean square error of denoising sample points, and accuracy analysis of change detection results, and compares and analyzes the advantages and disadvantages of these three methods. The results show that: 1) The three smoothing algorithms all effectively denoise the original NDVI time series data, and the effect is obvious;2) Ecological restoration can start from analyzing the vegetation coverage of the area;3) For the NDVI maximum synthetic data selected in this paper, B-W has the best denoising effect, followed by bise algorithm, and finally S-G algorithm has the worst denoising effect.
作者 尚洁琼
出处 《地球科学前沿(汉斯)》 2024年第10期1279-1287,共9页 Advances in Geosciences
  • 相关文献

参考文献6

二级参考文献84

  • 1蔡朝朝,淮永建,白涛,董峦.基于NDVI的新疆草地覆盖变化特征[J].应用基础与工程科学学报,2020,28(6):1369-1381. 被引量:12
  • 2张志强.辽阳市矿山开采的生态环境修复[J].科技创业家,2013(3). 被引量:2
  • 3马海波,董增川,张文明,梁忠民.SCE-UA算法在TOPMODEL参数优化中的应用[J].河海大学学报(自然科学版),2006,34(4):361-365. 被引量:49
  • 4DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J] Biometrika, 1994, 81 (3) : 425-455.
  • 5CHANG S GRACE, YU B, MARTIN Vetterli. Adaptive wavelet thresholding for image denoising and compres- sion[J] IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
  • 6BRUCE A G, GAO H Y. Understanding WaveShrink: variance and bias estimation [J]. Biometrika, 1996, 83 (4) : 727-745.
  • 7ROUSE J W,HAAS R H,SCHELL J A. Monitoring vegetation systems in the Great Plains with ERTS[A].1973.309-317.
  • 8SAVITZKY A,GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J].Analytical Chemistry,1964,(08):1627-1639.
  • 9J(O)NSSON P,EKLUNDH L. Seasonality extraction by function fitting to time-series of satellite sensor data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,(08):1824-1832.doi:10.1109/TGRS.2002.802519.
  • 10CHEN J,JONSSON P,TAMURA M. A simple method for reconstructing a high-quality NDVI time-series data setbased on the Savitzky-Golay filter[J].Remote Sensing of Environment,2004,(91):332-344.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部