期刊文献+

大数据分析中机器学习研究 被引量:2

The Study of Machine Learning in Big Data Analysis
下载PDF
导出
摘要 机器学习在大数据分析中起着越来越重要的作用,本文主要对大数据背景下机器学习方法和技术等进行了归纳和总结。首先对机器学习的基本模型、分类进行简介;然后对大数据环境下的机器学习的几个关键技术进行了叙述;接着展示了目前流行的四种大数据机器学习系统,并分析了其特点;最后指明了大数据机器学习的主要研究方向和所遇到的挑战因素等。 Machine learning played a more and more important role in the analysis of large data. The main methods and techniques of machine learning under the background of large data were summa-rized. Firstly, the basic model and classification of machine learning were introduced. Then, sev-eral key technologies of machine learning in large data environment were described. And the ar-ticle showed the popular four kinds of big data machine learning systems, and analyzed their characteristics. In the end, it pointed out the main research direction and the challenges of the big data machine learning.
出处 《人工智能与机器人研究》 2017年第1期16-21,共6页 Artificial Intelligence and Robotics Research
基金 陕西省教育厅科研专项(16JK1163) 陕西理工大学科研基金(SLGQD0903)。
  • 相关文献

参考文献11

二级参考文献170

  • 1Tom Mitchell. Machine Learning. McGraw Hill Higher Education, 1997.
  • 2Olivier C, Bernhard S, Alexander Z. Semi-Supervised Learning. The MIT Press, 2006.
  • 3Zhu X J. Semi-Supervised Learning Literature Survey. Madison: University of Wisconsin, 2008.
  • 4Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Raton, FL: Chapman & HaI1/CRC, 2012.
  • 5Freund Y, Schapire R E. A decision theoretic generalization of online learning and application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 6Breiman L. Bagging predictors. Machine Learning, 1996, 24(2): 123- 140.
  • 7Koller D, Friedman N. Probabilistie Graphical Models: Principles and Techniques. The MIT Press, 2009.
  • 8Darwiche A. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.
  • 9Pan J L, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2010, 22(10):1345-1359.
  • 10Bahadori M T, Liu Y, Zhang D. Learning with minimum supervision: a general framework for transduetive transfer learning. IEEE International Conference on Data Mining (ICDM), 2011.

共引文献276

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部