期刊文献+

基于语义链接网的图像自动标注

Image Auto-Annotation Using Semantic Link Network
下载PDF
导出
摘要 自动图像标注是机器视觉领域中的一项具有挑战性的课题。大多数传统方法聚集在视觉图像与标注概念间的建模,而忽略了语义概念之间的关系。本文提出了一种新的标注方法IA-SLN,它能有效捕获语义概念关系从而提升图像标注性能。首先,构建了一个基于全局关联语义与局部关联语义学习的语义链接网。其次,利用它标注未标注图像。当一个标注概念与其关联概念们频繁共现于图像中,IA-SLN方法将提升该标注概念的语义预测值。最后,通过一个标注增强新策略获得未标注图像的最相关语义标注。在IAPR公共数据集上对比了其他方法,实验结果表明我们的图像标注方法IA-SLN性能更优。 Image Auto-annotation remains as a challenge in machine vision.Most conventional approaches concentrate on the relations between visual images and labeled concepts,and neglect the correla-tions between semantic concepts.In this paper,we present a novel approach called Image Au-to-annotation using Semantic Link Network(IA-SLN),which can effectively capture semantic cor-relations to boost image auto-annotation.Specifically,we first construct a semantic link network based on the global concept correlations and the local concept correlations.Second,we utilize it to annotate unlabeled images.When a concept and its associated concepts frequently occur in images,the prediction of this concept will be boosted in our IA-SLN.Finally,we obtain the most relevant annotations for each of unlabeled images by using a new strategy of annotation promotion.The experimental results on the publicly available dataset IAPR have shown that our approach performs favourably compared with several other state-of-the-art methods.
出处 《人工智能与机器人研究》 2019年第3期158-165,共8页 Artificial Intelligence and Robotics Research
  • 相关文献

参考文献9

二级参考文献49

  • 1吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 2PAOLUCCI M,KAWMURA T,PAYNE T,et al.Semantic matching of Web services capabilities[C] ∥Procof the First International Semantic Web Conference.Berlin:Springer-Verlag,2002:333-347.
  • 3CILIBRASI Rudi L,VITNYI Paul M B.The Googlesimilarity distance[J].IEEE Transactions on Knowledgeand Data Enginering,2007,19(3):370-383.
  • 4CHEN Ping-I,LIN Shi-Jen.Automatic keyword predictionusing Google similarity distance[J].Expert Systems WithApplications,2010,37:1928-1938.
  • 5RISTO G,ZHARKO A,WARNER Ten K,et al.UsingGoogle distance to weight approximate ontology matches[C] ∥Proc of the 16th International Conference on WorldWide Web.Banff:Association for Computing Machinery,2007:767-776.
  • 6MAKREHCHI Masoud,KAMEL Mohamed S.Automatictaxonomy extraction using Google and term dependency[C] ∥Proc of the 2007 IEEE/WIC/ACM InternationalConference on Web Intelligence.Silicon Valley:Inst ofElec and Elec Eng Computer Society,2007:321-325.
  • 7Nikvand N,Wang Z.Generic image similarity based on Kolmo-gorov complexity[C]∥2010 17th IEEE International Conference on Image Processing(ICIP).IEEE,2010:309-312.
  • 8Zhang L,Zhuang Y,Yuan Z.A program plagiarism detection mo-del based on information distance and clustering[C]∥The 2007 International Conference on Intelligent Pervasive Computing,2007(IPC).IEEE,2007:431-436.
  • 9Ukil A.Application of Kolmogorov complexity in anomaly de-tection[C]∥2010 16th Asia-Pacific Conference on Communications(APCC).IEEE,2010:141-146.
  • 10Belabbes S,Richard G.On Using SVM and Kolmogorov Complexity for Spam Filtering[C]∥FLAIRS Conference.2008:130-135.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部