期刊文献+

基于卷积网络的运动想象脑电自制数据集分类算法研究 被引量:1

Research on Classification Algorithm of Self-Made Data Set of Motor Imagination EEG Based on Convolutional Network
下载PDF
导出
摘要 运动想象脑电信号分类已成为脑计算机接口研究领域的一个热点。本文通过实验室设备进行脑电采集并制作自己的数据集,同时将卷积神经网络与传统方法进行结合,提出了一种基于短时傅里叶变换和连续小波变换对原始数据进行特征提取使用卷积神经网络进行分类的算法。利用特征提取算法提取时频特征制成时频图并使用卷积网络快速学习特征进行分类。试验结果表明,该算法在运动想象脑电公共数据集中有着96%的准确率,在自制数据集上准确率达到92%左右,证明了该算法在运动想象脑电分类上的可行性。 Motor imaging EEG signal classification has become a hot spot in the field of brain computer inter-face research. This paper uses laboratory equipment to collect EEG and make its own data set. At the same time, it combines convolutional neural networks with traditional methods to propose a feature extraction method based on short-time Fourier transform and continuous wavelet trans-form. Convolutional neural network classification algorithm uses feature extraction algorithm to extract time-frequency features to make time-frequency map and uses convolutional network to quickly learn features for classification. The test results show that the algorithm has an accuracy rate of 96% in the motor imagery EEG public data set, and the accuracy rate is about 92% on the self-made data set, which proves the feasibility of the algorithm in motor imagery EEG classification.
作者 蔡辰玥
出处 《人工智能与机器人研究》 2021年第1期1-8,共8页 Artificial Intelligence and Robotics Research
  • 相关文献

参考文献2

二级参考文献69

  • 1高上凯.无创高通讯速率的实时脑-机接口系统[J].中国基础科学,2007(3):25-26. 被引量:12
  • 2何庆华,吴宝明,彭承琳,王禾,钟渝.基于小波和神经网络的视觉诱发电位识别方法[J].仪器仪表学报,2007,28(6):1003-1006. 被引量:10
  • 3WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology: A review of the first international meeting. [ J ]. IEEE Transactions on Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2000, 8(2) :164-73.
  • 4WOLPAW J R. Brain-computer interfaces as new brain output pathways [ J ]. Journal of Physiology, 2007, 579(3): 613 - 619.
  • 5REGAN D. Electrical responses evoked from the human brain [ J ]. Scientific American, 1985, 143 (241) :134-146.
  • 6CELESIA G G, PEACHEY N S, BRIGELL M, et al. Visual evoked potentials: Recent advances [ J ]. Electroencephalography and Clinical Neurophysiology,1996, 46(3) : 3-14.
  • 7ODOM J V, BACH M, BARBER C, et al. Visual evoked potentials standard ( 2004 ) [ J ]. Documenta Ophthalmologica Advances in Ophthalmology, 2004, 108(2) :115-23.
  • 8VIDAL J J. Real-time detection of brain events in EEG [J]. Proceedings of the IEEE, 1977, 65 (5): 633-641.
  • 9SUTrER E E. The brain response interface: communication through visually-induced electrical brain responses [ J ]. Journal of Microcomputer Applications, 1992, 15(1): 31-45.
  • 10REGAN D. Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine [ M]. New York: Appleton & Lange, 1989.

共引文献26

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部