摘要
本文研究热荷载下正交各向异性带型中的裂纹问题。利用傅里叶变换,将热边值问题转化为奇异积分方程。采用Lobatto-Chebyshev公式得到线性代数方程系统。给出了裂纹诱导的温度场的数值解,通过数值计算分析了裂缝表面温度差的变化规律,采用图型表明了裂纹位置和裂纹尺寸对温度场的影响。
This paper investigates the problem of a crack embedded in an orthotropic strip under a thermal loading. Using the Fourier transform, the thermal boundary value problem is transformed into a singular integral equation. The Lobatto-Chebyshev formula is used to further derive the linear system of algebraic equations. Through the numerical calculation, the temperature jump across the crack surface is obtained. Finally, the influence of crack position and crack size on the temperature field is reflected in the form of a graph.
出处
《应用物理》
2018年第10期439-447,共9页
Applied Physics
基金
广西自然科学基金(2016GXNSFAA380261)。