期刊文献+

机器学习在心理健康中的运用 被引量:1

Application of Machine Learning in Mental Health
下载PDF
导出
摘要 在社会快速发展以及疫情流行的大背景下,我国民众的心理健康问题日益严重,引进新的心理监督预测技术刻不容缓。机器学习作为人工智能主要的子领域之一,可以自动从数据中学习模型以做出更好的决策。由于其计算以及预测结果相较于人工更迅速准确,今年已被多国引入心理健康领域开始运用,并在精神疾病诊断、治疗和支持、研究和临床管理等一系列领域展现其作用。本文基于现状,介绍了当前机器学习在心理健康领域的运用,以及在该领域进一步发展的期望。 In the context of rapid social development as well as epidemic epidemics, the mental health problems of our population are becoming increasingly serious and the introduction of new psychological supervision and prediction techniques is urgent. Machine learning, one of the main subfields of artificial intelligence, can automatically learn models from data to make better decisions. Because its computation, as well as prediction results, are faster and more accurate compared to human, it has been introduced into the mental health field and started to be used in several countries this year, and has demonstrated its usefulness in a range of areas such as mental illness diagnosis, treatment and support, research and clinical management. This paper presents the current use of machine learning in mental health based on the current state of affairs and the expectations for further development in this field.
作者 郑本汇源
出处 《社会科学前沿》 2022年第11期4814-4848,共5页 Advances in Social Sciences
  • 相关文献

参考文献3

二级参考文献30

  • 1雎密太,张建新.大学生心理障碍干预模式研究述评[J].心理科学,2005,28(3):639-642. 被引量:31
  • 2彭香萍.大学生心理危机及自救策略[J].中国临床康复,2006,10(30):131-133. 被引量:17
  • 3Mark A. Beyer, & Douglas Laney. (2012, June 21) The Importance of "Big Data": A Definition[EB/OL] Retrieved February 4, 2015, from https://www.gartner com/doc/2057415/importance-big-data-definition.
  • 4Erik Cambria, Dheeraj Rajagopal, Daniel Olsher, and Dipankar Das. [Big social data analysis] . Big Data Com- puting[M]. Taylor & Francis. CRC Press,2013:401.
  • 5董奇.心理与教育研究方法(修订版)[M].北京:北京师范大学出版社,2006:228-229.
  • 6Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. Experimental evidence of massive-scale emotional conta- gion through social networks [J]. Proceedings of the Na- tional Academy of Sciences, 2014,111 (24): 8788-8790. doi:10.1073/pnas.1320040111.
  • 7Li, L., Li, A., Hao, B., Guan, Z., & Zhu, T. Pre- dicting Active Users' Personality Based on Micro-Blog- ging Behaviors[J].PLoS ONE,2014,9, (1), e84997, doi: 10.1371/j oumal.pone.0084997.
  • 8Bai, S., Yuan, S., Hao, B., & Zhu, T.Predicting personality traits of microblog users [J].Web Intelligence and Agent Sys- tems, 2014,12, (3), 249-265. doi: 10.3233/WIA-140295.
  • 9Q. Hu, A. Li, R. Gao and T. Zhu, "Depression Pre-diction towards Microblog Users based on the Multiple Periods" [Z].FedCSIS, 2014.
  • 10Hao, B., Li, L., Gao, R., Li, A., & Zhu, T. Sensing Subjective Well-Being from Social Media [EB/OL]. In D. lzak, G. Schaefer, S. T. Vuong, & Y.-S. Kim (Eds.), Active Media Technology .2014:pp. 324 - 335. Springer Interaa- tional Publishing. Retrieved from http://link.springer. corn/chapter/10.1007/978 - 3 - 319 - 09912 - 5_27.

共引文献49

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部