期刊文献+

植物响应低钾胁迫的信号传导和分子调节机制的研究进展 被引量:1

Research Progress on Signal Transduction and Molecular Regulatory Mechanism of Plants in Response to Low K<sup>+</sup> Stress
下载PDF
导出
摘要 钾离子在植物生长发育的诸多生理生化过程中起重要作用。由于连续的耕种和肥料的不合理使用,土壤钾离子含量日益下降。钾离子的缺乏已经成为限制植物正常生长发育的主要因子之一。因此,培育耐低钾品种已经成为重要的育种目标,耐低钾分子机制的研究和相关基因的挖掘对植物耐低钾品种改良奠定了基础。为了在低钾环境下生存,植物形成了复杂而高效的低钾信号传导途径,并且结合转录和翻译后调节机制协同抵御低钾胁迫。本文结合前人研究,主要从低钾信号的传递、转录水平调控和翻译后调控这三方面讨论了植物耐低钾的分子机制,为植物耐低钾的遗传改良提供了分子理论依据,也为今后的耐低钾研究提供一定的思路。 K+ plays crucial roles in diverse physiological and biochemical processes during plant growth and development. Due to irrational use of fertilizer and continuous cultivate, the K+ content of soil de-creased gradually. Deficiency of K+ content has become one of the major factors limiting the growth and development of plant. Therefore, breeding low K+-resistant varieties has become an important target of current crop breeding, and the excavation of low K+-resistant genes will lay the foundation for the variety improvement of low K+ resistance. To survive in low K+ environment, plants have evolved complex and high-efficiency signal transduction pathway, and combined with transcrip-tional regulatory and post-translational regulation to resist to low K+ stress. This paper, combined the previous research, discussed the molecular mechanism of low K+ tolerance from three aspects of low K+ signal transduction pathway, transcriptional regulatory and post-translational regulation to provide a molecular theoretical basis for genetic improvement of plant low K+ tolerance and a direc-tion for the study of plant low K+ resistance in the future.
出处 《植物学研究》 2020年第6期551-560,共10页 Botanical Research
关键词 低钾胁迫 低钾信号传导 转录调节 翻译后调控 分子机制 Low K<sup>+</sup> Stress Low KK<sup>+</sup> Signal Transduction Transcriptional Regulatory Post-Translational Regulation Molecular Mechanism
  • 相关文献

参考文献9

二级参考文献156

  • 1Clarkson DT, Hanson JB. The mineral nutrition of higher plants. Annu Rev Plant Physiol 1980; 31:239-298.
  • 2Very AA, Sentenac H. Molecular mechanisms and regulation of K^+ transport in higher plants. Annu Rev Plant Biol 2003; 54:575-603.
  • 3Schroeder JI, Ward JM, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K^+ channels in higher plants: biophysical implications for K^+ uptake. Annu Rev Biophys Biomol Struct 1994; 23:441-471.
  • 4Pettersson S, Jensen P. Variation among species and varieties in uptake and utilization of potassium. Plant Soil 1983; 72:231-237.
  • 5Mengel K, Kirkby EA. Potassium. In: Principles Of Plant Nutrition. Noewell: Kluwer Academic Publishers, 2001:503- 509.
  • 6Lebaudy A, Very AA, Sentenac H. K^+ channel activity in plants: genes, regulations and functions. FEBS Lett 2007; 581:2357-2366.
  • 7Gierth M, Maser P. Potassium transporters in plants - involvement in K^+ acquisition, redistribution and homeostasis. FEBS Lett 2007; 581:2348-2356.
  • 8Gambale F, Uozumi N. Properties of Shaker-type potassium channels in higher plants. J Membr Bio12006; 210:1-19.
  • 9Lagarde D, Basset M, Lepetit M, et al. Tissue-specific expression ofArabidopsis AKT1 gene is consistent with a role in K^+ nutrition. Plant J 1996; 9:195-203.
  • 10Ahn S J, Shin R, Schachtman DP. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 2004; 134: 1135-1145.

共引文献134

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部