期刊文献+

基于虚拟现实技术的柱塞泵实践教学系统开发

Development of Plunger Pump Experimental Teaching System Based on Virtual Reality Technology
下载PDF
导出
摘要 随着信息产业的快速发展,虚拟现实技术逐渐成为重点研究领域,而在教育领域虚拟现实技术的应用也越来越广泛。在实验设备紧缺的课程教学中,虚拟现实技术可以提供一种有效的解决方案。传统的柱塞泵课程教学通常需要一定的实验设备和环境,成本较高、难以维护。基于虚拟现实技术开发柱塞泵虚拟仿真系统成为一种解决方案,通过对柱塞泵的工作原理进行分析,设计相应的模型和算法,使用Unity引擎搭建了一个虚拟环境,将模型与算法集成进去,实现柱塞泵的虚拟自动拆装、虚拟手动拆装,并通过性能测试发布至安卓、PC等平台供用户使用。系统为实验教学提供了新的手段和途径,不仅可以替代传统的实验设备,还可以为学生提供更加安全和便捷的实验操作环境,在柱塞泵的教学和研究过程中发挥重要的作用。 With the rapid development of the information industry, virtual reality technology has gradually become a key research field, and its application in the field of education is becoming more and more widespread. In course teaching where experimental equipment is in short supply, virtual reality technology can provide an effective solution. Traditional plunger pump course teaching usually requires certain experimental equipment and environment, which is costly and difficult to maintain. The development of a plunger pump virtual simulation system based on virtual reality technology has become a solution. By analyzing the working principle of the plunger pump, designing corresponding models and algorithms, a virtual environment was built using the Unity engine to realize the virtualization of the plunger pump. The system realizes the functions of virtual automatic disassembly and virtual manual disassembly of the plunger pump. After the performance test, it can be released to Android, PC and other platforms for users to use. The system provides new means and approaches for experimental teaching. It can not only replace traditional experimental equipment, but also provide students with a safer and more convenient experimental operating environment, playing an important role in the teaching and research process of plunger pumps.
出处 《创新教育研究》 2024年第2期738-747,共10页 Creative Education Studies
  • 相关文献

参考文献5

二级参考文献90

  • 1朱忠祥,陈莉,李山山,刘波,宋正河,毛恩荣.基于虚拟现实的联合收获机底盘虚拟装配关键技术[J].农业机械学报,2013,44(S2):262-267. 被引量:16
  • 2Zhao Q P. A survey on virtual reality. Sci China Ser-F: Inf Sci, 2009, 52:348 400.
  • 3Azuma R, Baillot Y, Behringer R, et al. Recent advances in augmented reality. Comput Graph Appl, 2001, 21:34-47.
  • 4Bimber O, Raskar R, Inami M. Spatial augmented reality. Wellesley: AK Peters, 2005.
  • 5Raskar R, Welch C, Low K L, et al. Shader lamps: animating real objects with image-based illumination. In: Proceedings of the 12th Eurographics Workshop on Rendering Techniques, Vienna, 2001. 89-102.
  • 6Zhou F, Duh H B L, Billinghurst M. Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR. In: Proceedings of the 7th IEEE International Symposium on Mixed and Augmented Reality. Cambridge, 2008. 193-202.
  • 7Gere D S. Image capture using luminance and chrominance sensors. US Patent, 8 497 897, 2013-7-30.
  • 8Leininger B. A next-generation system enables persistent surveillance of wide areas. Defense Secur, 2008.
  • 9Leininger B, Edwards J, Antoniades J, et al. Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS). In: Proceedings of SPIE Defense and Security Symposium, Orlando, 2008. 69810H.
  • 10Brady D J, Gebm M E, Stack R A, et al. Multiscale gigapixel photography. Nature, 2012, 486:386-389.

共引文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部