期刊文献+

实时目标跟踪研究 被引量:1

Study on Real-Time Target Tracking
下载PDF
导出
摘要 针对图像序列中运动目标检测、跟踪的难点问题,提出了一种实时运动目标检测与跟踪算法。该算法基于自适应背景建模,获取运动目标背景模型和前景图像,从而实现运动目标检测;通过建立运动目标的位置、大小、形状以及颜色分布模型,构造运动目标全局匹配函数,结合目标活力特征,实现多运动目标连续匹配和跟踪。实验结果表明,相对于传统的运动目标跟踪方法,本文方法明显减少了运算时间,增强了环境适应性,实现了复杂场景下运动目标的准确检测和稳定跟踪,对非刚性目标的形变、旋转具有较强的鲁棒性。 In this paper, we propose a real-time mobile target detection and tracking algorithm for challenges of mobile target detection and tracking in sequential images. This algorithm based on the adaptive background modeling obtains background model and front-view images of mobile targets, which is the way to achieve target detection. Continuous matching and tracking of multiple mobile targets are realized through constructing position, size, shape and color distribution of the mobile targets, defining a global matching function for those targets, and associating their vitality characteristics. It is demonstrated by experiments that the algorithm presented in this paper, compared to the traditional methods of mobile target tracking, significantly reduces the computation time, improves adaptive feature to environments, achieves accurate detection and robust tracking of mobile targets in complex environments, and shows strong robustness to deformation and rotation of non-rigid targets.
作者 胡绍华 陈勇 何信华 沈志军 Shaohua Hu;Yong Chen;Xinhua He;Zhijun Shen(Beijing Institute of Structure and Environment Engineering,Beijing;CNPC Greatwall Drilling Engineering Company Limited Mudlogging Company,Panjin;Beijing Institute of Astronautical Systems Engineering,Beijing)
出处 《计算机科学与应用》 2014年第8期158-168,共11页 Computer Science and Application
关键词 目标检测 目标跟踪 背景减除 目标匹配 Object Detection Object Tracking Background Subtraction Object Matching
  • 相关文献

参考文献1

二级参考文献8

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 3Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433.
  • 4Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 5Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 6Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 7Lowe D G. Distinctive image features from scale invariant key points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision. Corfu, Greece: IEEE, 1999. 1150-1157.

共引文献70

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部