期刊文献+

脉冲噪音图像的修正恢复方法

Recovery Correction to Images Corrupted by Impulse Noise
下载PDF
导出
摘要 对于脉冲噪音和模糊图像,最常见的恢复方法是全变分加1范数,即TV/L1模型。但是,对于高噪音水平的情形,TVL1模型的恢复效果不太好。为解决上述问题,本文提出一种新的模型,即在TV/L1模型基础上,加上一个由反正切函数构造的线性的修正项。模型求解采用交替方向法。数值实验验证了本文所提出的新方法的有效性,尤其对于高噪音情形,去除脉冲噪音的效果明显优于TV/L1模型。 The total variation (TV) regularization term plus L1 norm, denoted by TV/L1 model, is widely used to the problem of image restoration where the observed images are corrupted by blur and impulse noise. However, TV/L1 model may produce a poor recovery solution, especially for high noise levels. In order to overcome the problem, we propose new modification of TVL1 (MTV/L1) which a linear correction term, constructed by an arc-tangent function, is added. Alternating di-rection method of multipliers (ADMM) is presented to solve the TV/L1 and MTV/L1 models. Nu-merical experiments verify that our proposed approach outperforms TV/L1 in terms of sig-nal-to-noise ratio (SNR) values and visual quality, especially for high noise levels.
作者 倪洁
机构地区 长沙市一中
出处 《计算机科学与应用》 2017年第2期124-128,共5页 Computer Science and Application
  • 相关文献

参考文献1

二级参考文献9

  • 1A Fabijanska, D Sankowski. Noise adaptive switching median- based filter for impulse noise removal from extremely corrupted im- ages [ J ]. IET Image Processing, 2011,5 (5) : 472-480.
  • 2W S Dong, et al. Nonlocally Centralized Sparse Representation for Image Restoration [ J ]. IEEE Transactions on Image Processing, 2013,22(4) :1620-1630.
  • 3Z Liu, et al. A Three-Domain Fuzzy Support Vector Regression for Image Denoising and Experimental Studies [ J ]. IEEE Trans. on Cybernetics, 2014,44(4) :516-525.
  • 4Y L Chen, et al. A New Automatic Parameter Setting Method of a Simplified PCNN for Image Segmentation [ J ]. IEEE Trans. On Neural Network, 2011,22(6) : 880-892.
  • 5M Zayed. A New Method for Impulse Noise Elimination and Edge Preservation[ J]. Canadian Jouranl of Electrcal and Computer En- gineering, 2014,37( 1 ) :2-9.
  • 6马义德,张红娟.PCNN与灰度形态学相结合的图像去噪方法[J].北京邮电大学学报,2008,31(2):108-112. 被引量:20
  • 7邹文洁.基于PCNN神经网络的图像去噪算法研究[J].计算机仿真,2008,25(8):234-237. 被引量:13
  • 8刘远民,秦世引.一种新的基于PCNN的自适应强去噪方法[J].北京航空航天大学学报,2009,35(1):108-112. 被引量:10
  • 9Binbin Hao,Jianguang Zhu.Wavelet inverse scale space for image restoration[J].Journal of Systems Engineering and Electronics,2012,23(6):929-935. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部