期刊文献+

草地图像边缘检测算法研究 被引量:1

Research on Edge Detection Algorithm of Grass Image
下载PDF
导出
摘要 本文针对草地图像边缘检测进行研究,传统的草地图像边缘检测算法,如canny算法,不仅边缘不够清晰,而且运算时间较长,不能达到智能机器人对实时性的要求。本文运用k-means算法对色彩进行分类进而选定绿色为目标色进行提取,再利用膨胀和腐蚀运算,选取合适的结构元素对图像进行填充和细化,通过实验对比其他传统边缘分割方法,探讨了数学形态学在割草机器人工作区域划分中的重要应用。实验证明,本文选用的边缘检测策略不仅能够清晰准确的识别出草地边缘,而且相比传统的边缘检测算子,运算更快,实用性更强。 This paper aims at a study of lawn image edge detection. Traditional grass image edge detection algorithm such as the canny, its results are not clear enough and the operation time is longer, which can not meet the real-time requirements of intelligent robots. In this paper, the k-means algorithm is used to classify the colors and select the green as the target color. Then, the appro-priate structural elements are selected by expansion and corrosion calculations. Finally, the image is filled and refined using this structural element. This paper discusses the important application of mathematical morphology in the division of working area of mowing robot by comparing other traditional edge segmentation methods. In conclusion, the algorithm presented in this article not only can identify the edge of the grass accurately, but also faster operation and more practical than traditional algorithms.
机构地区 中原工学院
出处 《计算机科学与应用》 2017年第5期457-462,共6页 Computer Science and Application
基金 国家自然科学基金项目支持,No.U1404606,基于概率图模型的图像分割方法研究 本文得到河南省科技攻关项目支持No.152102210360,深度学习在视觉目标检测中的关键技术研究 No.172102210070,基于机器视觉和无线定位技术的割草机器人模型研究.
  • 相关文献

参考文献5

二级参考文献53

  • 1郑丽,潘建平.基于数学形态学的遥感图像道路提取[J].铁道勘察,2010,36(1):12-15. 被引量:5
  • 2王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 3段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 4邓华秋,黄巧洁.结合相关模板匹配和改进的积分投影眼睛定位方法[J].交通与计算机,2007,25(2):75-78. 被引量:3
  • 5SonkaM,HlavacV,BoyleR.图像处理分析与机器视觉[M].北京:人民邮电出版社,2003:83-91.
  • 6陈黎,黄心汉.基于聚类分析的车牌字符切分方法[J].计算机工程与应用,2003,24(1):77-79.
  • 7胡小峰,赵辉.Visual C++/matlab图像处理与识别案例精选[M].人民邮电出版社,2004.
  • 8Mukhopadhyay S, Chanda B. An edge preserving noise smoothing technique using multiscale morphology [ J ]. Signal Processing, 2002, 82 (4) : 527 - 544.
  • 9Zhao Yu-qian, Gui Wei-hua, Chen Zhen - cheng, et al. Edge Detection of Brain Magnetic Resonance Image by Muhiscale Morphology [ J ]. International Journal of Tomography & Statistics, 2006, 4 (W06) : 33 -43.
  • 10Amini L, Soltanian-Zadeh H., Lucas C, et al. Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours [ J ]. IEEE Trans. on Biomedical Engineering, 2004, 51 ( 5 ) : 800 - 811.

共引文献21

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部