期刊文献+

基于学习的网格特征边界边识别 被引量:1

Learning-Based Identification for Feature Boundary Edges of Meshes
下载PDF
导出
摘要 特征边界边识别是复杂三角网格模型后续应用的基础,采用单一阈值和判定规则很难识别符合实际要求的特征边。对特征边界线的几何特征的深入分析,基于机器学习的方法,提出和实现一个基于学习的三角网格模型特征边界边识别方法。该方法将特征边界线识别形式化为三角边的分类问题;分析和构建了一个由三角边两面角、边顶点邻域曲率及形状直径等特征组成的17维特征向量;通过人工标注获取特征向量训练数据集,训练通用BP-AdaBoost分类器,获得能够识别特征边界线的分类器;对待识别的三角网格模型进行特征边识别。经过实例验证,识别结果符合预期。 Feature boundary edge recognition is the basis for subsequent applications of complex triangular mesh models. It is difficult to identify feature edges that can meet actual requirements by using single threshold and decision rules. In this paper, the geometric characteristics of the feature boundary edge are analyzed. Based on the machine learning method, a learning-based method for identifying feature boundary edges of triangular mesh model is proposed and implemented. In this method, the feature boundary edge recognition is formalized as the classification problem of triangular edges. A 17-dimensional eigenvector to describe the geometric characteristics of feature boundary edges is analyzed and constructed, which consists of a dihedral angle, curvatures and a shape diameter. The eigenvector training data set is obtained by manual annotation, and is in-putted into the general BP-AdaBoost classifier to train it in order to make it have the capability to identify feature boundary edges. The trained BP-AdaBoost classifier can identify the feature boundary edges correctly. It is proved by examples that the identification result is in line with the expectation.
出处 《计算机科学与应用》 2018年第4期487-495,共9页 Computer Science and Application
基金 国家自然科学基金项目(51775081, 51375069)。
  • 相关文献

参考文献5

二级参考文献52

  • 1李二涛,张国煊,曾虹.基于最小二乘的曲面拟合算法研究[J].杭州电子科技大学学报(自然科学版),2009,29(2):48-51. 被引量:53
  • 2王醒策,蔡建平,武仲科,周明全.局部表面拟合的点云模型法向估计及重定向算法[J].计算机辅助设计与图形学学报,2015,27(4):614-620. 被引量:18
  • 3杜培林,屠长河,王文平.点云模型上测地线的计算[J].计算机辅助设计与图形学学报,2006,18(3):438-442. 被引量:14
  • 4陈为,马瑞金,郑文庭,梁潇,彭群生.基于OBB树的无网格几何数据处理[J].计算机学报,2007,30(2):330-336. 被引量:5
  • 5Varady T, Martin R R, Cox J. Reverse engineering of geometric models---An introduction [ J ] . Computer-Aided Design, 1997, 29(4): 255--268.
  • 6Milroy M J, Bradley C, Vickers G W. Segmentation of a wraparound model using an active contour [ J ] . Computer-Aided Design, 1997, 29(4): 299--320.
  • 7Saeid MotavaUi. Review of reverse engineering approaches[J].Computer Industry Engineering, 1998, 35(1/2): 25--28.
  • 8Yang M, Lee E. Segmentation of measured data using a parametric quadric surface approximation [J ]. Computer-Aided Design, 1999, 31(7): 449--457.
  • 9Sapidis N S, Besl P J. Direct construction of polynomial surfaces from dense range images through region growing [ J ] . ACM Transactions on Graphics, 1995, 14(2): 171--200.
  • 10Chen Y H, Liu C Y. Quadric surface extraction using genetic algorithms[J]. Computer-Aided Design, 1999, 31(2): 101--110.

共引文献77

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部