期刊文献+

k次十二面体–师连通圈网络 被引量:3

K Dodecahedron-Shi Connected Cycles Networks
下载PDF
导出
摘要 互连网络是超级计算机的重要组成部分,片上互连网络是当前研究的热点课题之一。k次十二面体–师连通圈网络是一类重要的互连网络,是在2010年师海忠提出互联网络的正则图连通圈网络模型的基础上设计的新网络模型。它是将十二面体连通圈网络的每个顶点用三角形代替k次得到的,记为DSCC(k),它是3正则3连通的平面图,且有许多好的性质。文中提出了关于该网络的一系列猜想,如猜想1:k次十二面体–师连通圈网络是Hamilton图,对猜想1、2、3作了严格的证明。作者还利用图的笛卡尔乘积方法构建了新的笛卡尔乘积互连网络DSCC(k)xK2和DSCC(k)xCm,并对其性质进行了研究。 An interconnection network is an important part of a supercomputer. On chip interconnection network is one of the hot topics in current research. A class of important interconnection network of the K dodecahedron-Shi connected cycle network is a new network model based on the regular graph connected cycle network model of the internet in 2010. It is obtained by replacing each vertex of a dodecahedron connected cycle network with triangle K times, and it is recorded as DSCC(k). It is a 3-regular and 3-connected plane graph, and has many good properties. In this paper, a series of conjectures about the network are proposed, such as the conjecture 1: K dodecahedron- Shi connected cycle network is a Hamilton graph, and the conjectures 1, 2, and 3 are proved strictly. The author also uses the Descartes product method of graphs to construct a new Descartes product interconnected DSCC(k)xK2 and DSCC(k)xCm, and study their properties.
作者 师海忠 张治成 Haizhong Shi;Zhicheng Zhang(College of Mathematics and Statistics, Northwest Normal University, Lanzhou Gansu)
出处 《计算机科学与应用》 2018年第6期1013-1026,共14页 Computer Science and Application
关键词 互连网络 十二面体连通圈网络 HAMILTON图 笛卡尔乘积网络 Interconnection Network Dodecahedron Connected Cycle Network Hamilton Graph Cartesian Product Interconnection Network
  • 相关文献

参考文献2

二级参考文献24

  • 1Akers S B, Harel D, Krishnamurphy B. The star graph: An at- tractive alternative to the n-cube[C]//Proceedings of Interna- tional Conference on Parallel Processing. 1987:393-400.
  • 2Akers S B,Krishnamurthy B. A group-theoretic Model for sym- metric interconnection networks [J]. IEEE Transactions on Computers, 1989,38(4) : 555-565.
  • 3Lakshmivaraha S, Two J-S, Dhall S K. Symmetry in interconnec- tion networks based on Cayley graphs of permutation groups., a survey[J]. Parallel computing, 1993,19(4) : 361-407.
  • 4Andre F, Verjus J P. Hypercubes and Distributed computer [M]. Amsterdam, New York, Oxford: North-Halland, 1989.
  • 5Biggs N. Algebraic Graph Theory [M]. Cambridge: Cambridge University Press, 1993.
  • 6Bondy J A, Murty U S R. Graph Theory with Applications[M]. London and Basingstoke: MacMillan Press LTD, 1976.
  • 7Harary F. Recent results and unsolved problems on hypercube theory[M]. Alavi Y , Chartrand G, Oellermann O R, et al. , eds. Graph Theory, Combinatorics, Applications, John Wiley sons, 1991 : 621-632.
  • 8Barnes G H,Brown R M,Kato M,et al. The ILLIAN computer [J]. IEEE Transactions on Computers, 1968,17 : 746-757.
  • 9Kai Hwang.高等计算机系统结构:并行性、可扩展性、可编程性[M].王鼎兴,等译.北京:清华大学出版社,南宁:广西科学技术出版社,1995.
  • 10Witte D, Gallian J A. A survey Hamilton cycles in Cayley graphs [J]. Discrete Mathematics 1984,51 : 293-304.

共引文献14

同被引文献2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部