期刊文献+

基于形状特征的商标图像检索系统

The Shape-Based Trademark Image Retrieval System
下载PDF
导出
摘要 目的:本文采用图像形状特征来描述商标图像特征点,建立基于形状特征的商标图像检索系统,以实现更直观、准确和快捷的商标图像检索。方法:本文在Canny算法的基础上提出一种改进的自适应Canny边缘提取算法,在Shape Context的基础上提出能反映图像内部结构的Inner-Angle Shape Context,并将新算法应用于图像检索系统中。结果:设计和实现了基于形状特征的商标图像检索系统,该系统由商标预处理、特征提取和商标检索三个模块组成,实现了对任意商标在已有商标数据库中的检索,返回与样本商标最相似的15幅商标图像。结论:商标图像检索系统的实验结果表明,该系统前6个检索结果的查准率达85%,查全率达22%。 Objective: This paper uses shape feature to describe the trademark image feature points, and establish the trademark image retrieval system based on shape feature, in order to realize more intuitive, accurate and fast trademark image retrieval. Method: This paper puts forward an improved adaptive Canny edge detection algorithm and Inner-Angle Shape Context that are applied to trademark image retrieval system. Results: A trademark image retrieval system is designed based on shape feature, which consists of preprocess, feature extraction, and trademark retrieval. It realizes the retrieval of any trademark in the existing trademark database, and returns the 15 most similar trademark. Conclusion: The experimental results of the trademark image retrieval system show that the accuracy rate of the first 6 retrieval results of the system is 85%, and the total recall rate is 22%.
作者 康娜 张伟 闫冲 Na Kang;Wei Zhang;Chong Yan(Shanxi Medical University,Jinzhong Shanxi)
机构地区 山西医科大学
出处 《计算机科学与应用》 2018年第6期1000-1012,共13页 Computer Science and Application
关键词 商标图像 形状特征 检索系统 内角形状上下文 Trademark Image Shape Character Retrieval System Inner-Angle Shape Context
  • 相关文献

参考文献6

二级参考文献58

  • 1王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 2张冬芳,王向周.基于数学形态学的图像边缘处理[J].微计算机信息,2006(08S):186-187. 被引量:21
  • 3张震,马驷良,张忠波,刘辉,宫跃欣,孙秋成.一种改进的基于Canny算子的图像边缘提取算法[J].吉林大学学报(理学版),2007,45(2):244-248. 被引量:53
  • 4王振华,窦丽华,陈杰.一种尺度自适应调整的高斯滤波器设计方法[J].光学技术,2007,33(3):395-397. 被引量:31
  • 5Zhai Lei,Dong Shouping,Ma Honglian.Recent methods and applications on image edge detection[C].International Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing,2008:332-335.
  • 6Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 7Yan Guoping,Pan Qing,Kang Yang.Research on a new gaussian self-adaptive smoothing algorithm in image processing[C].Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology,2005:348-352.
  • 8Zhang Jun,Hu Junlu.Image segmentation based on 2D Otsu method with histogram analysis[C].International Conference on Computer Science and Software Engineering,2008:105-108.
  • 9Brownrigg D R K. The weighted median filter [ J ] .Communication of the Association for Computing Machinery,1984, 27(8) :807--818.
  • 10T Sun, Y Neuvo. Detail-preserving median based filters in image processing [J ]. Pattern Recognition Letters, 1994, 15(4) : 341--347.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部