摘要
针对视频监控中特定行人的检索、识别问题被称作行人重识别,是当前计算机视觉领域一个重要的研究课题。由于实际监控场景的复杂性,被拍摄到的行人图片会出现尺度变化、旋转、遮挡、光照差异等问题,给行人重识别研究带来了很大的挑战。提取鲁棒的行人特征、设计合适的度量方法、对查询的排序结果列表进行重新排序等是目前该领域研究的主要思路。针对行人重识别领域,本文主要调查研究了行人重识别领域的发展背景和研究现状并在结尾给出了对该领域的研究展望。
The retrieval and recognition of a specific pedestrian is called person re-identification,which has been an important topic in the field of computer vision.Since images captured in surveillance are often involved scale variation,rotation,occlusions and changing illumination,person re-identification remains very challenging.Current research mainly focuses on three aspects:robust feature representations,metric learning and re-Ranking.In this paper,we mainly focus on the history and related works of person re-identification and give the further work of this task.
出处
《计算机科学与应用》
2019年第5期896-903,共8页
Computer Science and Application