期刊文献+

经典推荐算法研究综述 被引量:9

Review of Classical Recommendation Algorithms
下载PDF
导出
摘要 推荐系统作为一种有效的信息过滤工具,由于互联网的不断普及、个性化趋势和计算机用户习惯的改变,将变得更加流行。尽管现有的推荐系统也能成功地进行推荐,但它们仍然面临着冷启动、数据稀疏性和用户兴趣漂移等问题的挑战。本文概述了推荐系统的研究现状,对推荐算法进行了分类,介绍了几种经典的推荐算法,主要包括:基于内容的推荐算法、协同过滤推荐算法和混合推荐算法,并对推荐系统未来的研究趋势进行了展望。 Recommender systems are effective tools of information?ltering that are prevalent due to continuous popularization of the Internet,personalization trends,and changing habits of computer users.Although existing recommender systems are successful in producing decent recommendations,they still suffer from challenges such as cold-start,data sparsity,and user interest drift.This paper summarizes the research status of recommendation system,presents an overview of the field of recommender systems,describes the classical recommendation methods that are usually classified into the following three main categories:content-based,collaborative and hybrid recommendation algorithms,and prospects future research directions.
机构地区 信息工程大学
出处 《计算机科学与应用》 2019年第9期1803-1813,共11页 Computer Science and Application
基金 国家自然科学基金(61773399).
  • 相关文献

参考文献4

二级参考文献62

  • 1张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 2Mcnee S M, Riedl J, Konstan J A. Being accurate is not enough: How accuracy metrics have hurt recommender systems [ C ]// Proceedings of the CHI' 06 Conference on Human Factors in Computing Systems. New York : ACM , 2006:1097 - 1101.
  • 3Zhou Tao, Kuscsik Z, Liu Jianguo, el al. Solving the apparent diversity - accuracy dilemma of recommender systems [ J ]. Proceedings of the National Academy of Sciences of the USA,2010, 107(10): 4511 -4515.
  • 4ltu Rong, Pu P. I telping users perceivc recommendation diversity [ C ]//Proceedings of the Workshop on Novelty and Diversity in Recommender Systems. New York: ACM , 2011:43-50.
  • 5Hurley N, Zhang Mi. Novelty and diversity in top - n recommendation-analysis and evaluation [ J ]. ACM Transactions on lnternet Technology, 2011, 10(4) : 1 -30.
  • 6Zhang Mi, Hurley N. Avoiding monotony:Improving the diversily of recommendation lists [ C ]//Proceedings of the ACM Conference on Recommender Systems. New York: ACM . 2008:123 - 130.
  • 7Ziegler C N, Lausen G. Making product recommendations more diverse [ J ]. IEEE Data Engineering Bulletin, 2009, 32 (4) : 23 -32.
  • 8Ziegler C N, McNee S M, Konstan J A, et al. Improving recommendation lists through topic diversification [ C]// Proceedings of the 14th International Conference on World Wide Web ( WWW' 05 ). New York : ACM, 2005 : 22 - 32.
  • 9Bradley K, Smyth B. Improving recommendation diversity [ C ]// Proceedings of the 12th Irish Conference. Artificial Intelligence and Cognitive Science. Berlin: Springer-Verlag, 2001 : 221 -230.
  • 10Smyth B, McClave P. Similarity vs diversity [ C ]//Proceedings of the Fourth International Conference case-based reasoning: Case- based reasoning research and development. Berlin: Springer -Verlag, 2001:347-361.

共引文献489

同被引文献48

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部