期刊文献+

基于推荐的社交媒体数据发布的隐私保护

Privacy Protection Based on the Publication of Recommended Social Media Data
下载PDF
导出
摘要 个性化的推荐需要使用大量的用户数据,尤其是用户在社交媒体上的活动数据,包括评级、签到等,然而,从大量的用户活动数据中,能够推断出用户的隐私数据。在本文中,针对FM推荐算法的特性,提出距离度量KFC,约束数据失真,提出了PrivFM,一个可定制的、连续的、保护隐私的社交媒体数据发布框架,通过扰乱用户发布的活动数据,防止推理攻击,同时保证推荐效用。实验结果表明,相对于其他的隐私保护方法及距离度量,提高了隐私保护与推荐之间的平衡。 Personalized recommendation requires the use of a large amount of user data, especially the activity data of users on social media, including ratings, checkins, etc. However, from a large amount of user activity data, users’ privacy data can be inferred. In this paper, aiming at the characteristics of FM recommendation algorithm, distance measurement KFC (Kendall feature correlation) was proposed to constrain data distortion, and PrivFM, a customizable, continuous and privacyprotecting social media data publishing framework, was proposed to prevent inference attacks by disrupting the active data published by users, while ensuring the recommendation effectiveness. The experimental results show that compared with other privacy protection methods and distance measurement, the balance between privacy protection and recommendation is improved.
作者 张兴兰 杨捷
机构地区 北京工业大学
出处 《计算机科学与应用》 2020年第3期427-436,共10页 Computer Science and Application
  • 相关文献

参考文献3

二级参考文献54

  • 1SWEENEY L. ^-anonymity: a model for protecting privacy[ J ]. Inter-national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,2002,10(5) :557-570.
  • 2SWEENEY L. Achieving A>anonymity privacy protection using gener-alization and suppression[ J]. International Journal on Uncertainty,Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588.
  • 3Li Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. (-closeness :privacy beyond A:-anonymity and /-diversity [ C ] //Proc of the 23rd International Conference on Data Engineering. Washington DC: IEEE Computer Society ,2007 :106-115.
  • 4MACHANAVAJJHALA A,KIFER D, GEHRKE J, et al. /-diversity; privacy beyond A:-anonymity [ C ] //Proc of the 22nd International Conference on Data Engineering. Washington DC:IEEE Computer Society,2006 :24-35.
  • 5CORMODE G,PROCOPIUC M,SRIVASTAVA D. et aL Differentially private publication of sparse data [ J ]. ArxiV Preprint arXiv : 1103. 0825,2011.
  • 6SARATHY R,MURALIDHAR K. Some additional insights on applying differential privacy for numeric data [ C ]//Proc of International Conference on Privacy in Statistical Databases. Berlin : Springer-Ver-lag,2010:210-219.
  • 7DWORK C, NAOR M,PITASSI T,et al. Pan-private streaming algorithms [C ] //Proc of the 1st Symposium on Innovations in Computer Science. Beijing:Tsinghua University Press, 2010.
  • 8DWORK C, NAOR M,PITASSI T, et al. Differential privacy under continual observation [ C ]//Proc of the 42nd ACM Symposium on Theory of Computing. New York: ACM Press,2010:715-724.
  • 9LI Ning-hui, QARDAJI W,SU Dong. Provably private data anony-mization: or, A:-anonymity meets differential privacy, CERIAS TR 2010-24[ R] . West Lafayette; Center for Education and Research Information Assurance and Security,Purdue University ,2010.
  • 10ZHOU Shu-heng, LIGETT K, WASSERMAN L. Differential privacy with compression [ C ] //Proc of IEEE International Symposium on Information Theory. Washington DC: IEEE Computer Society, 2009: 2718-2722.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部