期刊文献+

基于用户性格分析的智能礼物推荐系统 被引量:1

Intelligent Gift Recommendation System Based on User Personality Analysis
下载PDF
导出
摘要 针对有些客户在购买礼物时挑选困难的问题,本文采用C/S模式架构设计,再采用语音转文本、jieba分词等技术,设计实现了一款智能礼物推荐系统。前端采用卡片式 + 瀑布流式布局设计;后台采用SpringBoot和Flask相结合的后台开发。本文利用送礼人对收礼人的语音描述,编写基于用户性格的商品推荐算法,智能的推荐与收礼人相匹配的礼物。系统为用户提供了查询浏览礼物商品、发布查看礼物帖子、浏览收藏关注DIY礼物教程、精致礼物推荐美文、智能推荐礼物、好友生日提醒以及用户所有信息查看功能,解决了用户挑选礼物时会遇到的问题。 Aiming at the problem that some customers have difficulty in choosing gifts, this paper adopts C/S mode architecture design, and then uses voice to text, jieba word segmentation and other technologies to design and implement a smart gift recommendation system. The front-end adopts the card + waterfall flow layout design;the back-end adopts the background development combined with SpringBoot and Flask. This article uses the voice description of the giver to the recipient, writes a product recommendation algorithm based on the user’s personality, and intelligently recommends gifts that match the recipient. The system provides users with the functions of querying and browsing gift products, posting and viewing gift posts, browsing collections and following DIY gift tutorials, exquisite gift recommendation text, smart recommendation gifts, friend birthday reminders, and all user information viewing functions, which solves the problems encountered by users when choosing gifts.
作者 卢梦丽 兰红
机构地区 江西理工大学
出处 《计算机科学与应用》 2020年第5期978-989,共12页 Computer Science and Application
  • 相关文献

参考文献7

二级参考文献45

  • 1李守振,张南平,常国锋.Web应用分层与开发框架设计研究[J].计算机工程,2006,32(22):274-276. 被引量:32
  • 2刘平峰,聂规划,陈冬林.电子商务推荐系统研究综述[J].情报杂志,2007,26(9):46-50. 被引量:36
  • 3王海忠,王晶雪,何云.品牌名、原产国、价格对感知质量与购买意向的暗示作用[J].南开管理评论,2007,10(6):19-25. 被引量:62
  • 4Xiao B, Benbasat I. E-commerce product recommen- dation agents : Use, characteristics, and impact [ J ]. MIS Quarterly, 2007,31 ( 1 ) : 137-209.
  • 5Linden G, Smith B, York J. Amazon. com recommen- dations : Item-to-item collaborative filtering [ J ]. IEEE Internet Computing, 2003,7 ( 1 ) :76-80.
  • 6Fleder D M, Hosanagar K. Blockbuster culture' s next rise or fall:The impact of recommender systems on sales diversity [ J ]. Management Science, 2009,55 (5) :697-712.
  • 7Kelly J P, Bridge D. Enhancing the diversity of con- versational collaborative recommendations : A compari- son [ J ] . Artificial Intelligence Review, 2006,25 ( 1/ 2) :79-95.
  • 8Pu P, Chen L, Hu R. Evaluating recommender sys- tems from the user's perspective:Survey of the state of the art [ J ]. User Modeling and User-Adapted Interaction, 2012,22 (4/5) : 317- 355.
  • 9Zhang Y, Callan J, Minka T. Novelty and redundancy detection in adaptive filtering [ C ] //Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retriev- al. New York, NY : ACM Press, 2002:81-88.
  • 10Murakami T, Mori K, Orihara R. Metrics for evalua- ting the serendipity of recommendation lists [ J ] . New Frontiers in Artificial Intelligence, 2008,4914 : 40 - 46.

共引文献122

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部