期刊文献+

基于机器学习的建筑能耗研究进展

Advances in the Study of Building Energy Consumption by Machine Learning Method
下载PDF
导出
摘要 为了高效降低建筑能耗,减少碳排放,对采用机器学习算法进行建筑能耗研究进行了综述。首先介绍了机器学习的基本原理,然后介绍了基于机器学习方法的建筑能耗数据处理,最后介绍了基于机器学习方法的公共建筑、住宅建筑和建筑群能耗研究现状,并指出目前研究存在的问题及改进措施,提出今后尚需进一步研究的问题。 In order to efficiently reduce building energy consumption and reduce carbon emissions, a review of building energy consumption research using machine learning algorithms is reviewed. First, the basic principles of machine learning are introduced, then building energy consumption data processing based on machine learning methods, and finally, the current status of research on energy consumption of public buildings, residential buildings and building groups based on machine learning methods. Several problems on the current research are pointed out. The proposals that need further study in the future are put forward.
作者 李继伟 徐丽
出处 《计算机科学与应用》 2020年第5期1002-1008,共7页 Computer Science and Application
  • 相关文献

参考文献17

二级参考文献102

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部