期刊文献+

基于迁移学习和残差网络的农作物病害识别 被引量:2

Crop Disease Recognition Based on Residual Network of Transfer Learning
下载PDF
导出
摘要 针对人工识别农作物病害受主观因素的影响较大,传统的农作物病害识别训练时间较长、训练中有过多参数的问题,本文提出一种基于迁移学习和残差网络模型对农作物病害进行识别的研究方法。本研究以常见的6种农作物共19类病害叶片图像为研究对象,对农作物病害图像进行识别。首先对图片数据集进行旋转翻折、随机裁剪等预处理扩充数据集,以减少网络模型的过拟合。基于扩充后的农作物病害数据集,本文使用Resnet-50网络模型,并利用迁移学习的方法对农作物病害进行识别,进行参数微调,最后对模型进行训练测试。试验结果表明,与传统的识别模型相比,该方法能够快速准确的对农作物病害进行识别,并且识别的准确率高达91.24%。 Aiming at the problem that the artificial recognition of crop diseases is greatly affected by subjective factors, the traditional crop disease recognition training takes a long time and there are too many parameters in the training, this paper proposes a method based on migration learning and residual network model for crop diseases. In this study, we used images of 19 types of diseased leaves of 6 common crops as the research object to identify crop disease images. Firstly, the image data set is preprocessed to expand the data set such as rotation, folding, random cropping, etc., to reduce the overfitting of the network model. Based on the expanded crop disease data set, this paper uses the Resnet-50 network model, and uses the transfer learning method to identify crop diseases, fine-tune the parameters, and finally train and test the model. The test results show that compared with the traditional recognition model, this method can quickly and accurately recognize crop diseases, and the recognition accuracy rate is as high as 91.24%.
作者 刘冬寒 钱程
出处 《计算机科学与应用》 2021年第4期1165-1172,共11页 Computer Science and Application
  • 相关文献

参考文献2

二级参考文献27

  • 1贾世杰,邹娟,王茹香.基于类词包技术的图像分类算法[J].化工自动化及仪表,2012,39(11):1465-1467. 被引量:2
  • 2Le Q V,Ndiam J,Coates A,et al.On optimization methods for deep learning[C]//The 28th International Conference on Machine Learning.Bellevue,Washington,June 28-July 2,2011:4-7.
  • 3Mairal J,Koniusz P,Harchaoui Z,et al.Convolutional kernel networks[DB/OL].[2014-06-12][2014-09-24]http://arxiv.org/abs/1406.3332.
  • 4Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[DB/OL].[2014-09-17][2014-09-24]http://rxiv.org/abs/1409.4842.
  • 5Lecun Y,Kavukcuoglu K,Farabet C.Convolutional networks and applications in vision[C]//IEEE International Symposium on Circuits and Systems.Pairs,May 30-June 2,2010:253-256.
  • 6Bengio Y.Deep learning architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127.
  • 7Hubel D H,Wiesel T N.Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J].The Journal of Physiology,1962,160(1):106-154.
  • 8Bouvrie J.Notes on convolutional neural networks[DB/OL].[2006-09-22][2014-09-24].http://cogprints.org/5869/1/cnn _tutorial.pdf.
  • 9Lecun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 10Krizhevsky A,Sutskever I,H inton G E.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,Annual Conference.Lake Tahoe,Nevada,Dec.3-6,2012:1097-1105.

共引文献168

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部