期刊文献+

基于非下采样轮廓波的红外与可见光图像融合

Fusion of Infrared and Visible Images Based on NSCT
下载PDF
导出
摘要 传统图像融合方法主要聚焦于图像细节信息整合,容易损失图像背景信息,本文借助于非下采样轮廓波的多尺度分解能力和模糊逻辑特性,提出一种红外与可见光图像融合的算法。首先,使用非下采样轮廓波获取图像高频成分和低频成分;其次,利用模糊逻辑规则整合低频成分,使用区域空间频率整合图像高频成分;最后,经过非下采样轮廓波逆变换得到融合图像。实验结果表明,与传统图像融合方法相比,本文算法能够较好地保留可见光图像的背景信息,同时凸显红外目标信息。 Traditional image fusion methods mainly focus on the integration of image details, which is easy to lose the background information. In this paper, by means of the multi-scale decomposition ability of non-subsampled contour waves and the characteristics of fuzzy logic, an algorithm of infrared and visible image fusion is proposed. Firstly, the high-frequency and low-frequency components of the image are obtained by using non-subsampled contour waves. Secondly, fuzzy rules were used to integrate low-frequency components, and regional clarity was used to integrate high-frequency components. Finally, the fused image is obtained by the inverse contourwave transform. Experimental results show that, compared with traditional image fusion methods, the proposed algorithm can retain the background information of visible images and highlight the infrared target information.
出处 《计算机科学与应用》 2021年第6期1755-1762,共8页 Computer Science and Application
  • 相关文献

参考文献5

二级参考文献43

  • 1孙红星,王蓉,赵楠楠,徐心和.基于小波提升和形态学的图像边缘检测方法[J].系统仿真学报,2006,18(z2):869-871. 被引量:11
  • 2李光鑫,王珂,张立保.加权多分辨率图像融合的快速算法[J].中国图象图形学报,2005,10(12):1529-1536. 被引量:13
  • 3尹德辉,李炳法,唐燕.基于小波变换的融合算法研究[J].系统仿真学报,2006,18(5):1289-1291. 被引量:7
  • 4杨志,毛士艺,陈炜.基于局部方向能量的鲁棒图像融合算法[J].电子与信息学报,2006,28(9):1537-1541. 被引量:6
  • 5徐光宝,姜东焕.自适应多尺度Canny边缘检测[J].山东建筑大学学报,2006,21(4):360-363. 被引量:6
  • 6Zhong Zhang, R S Blum. A Categorization of Multiscale- decomposition-based Image Fusion Schemes with a Performance Study for a Digital Camera Application [J]. Proceedings of the IEEE (S0018-9219), 1999, 87(8): 1315-1326.
  • 7Lewis J J, O'Callaghan R J. Region-Based Image Fusion Using Complex Wavelets [C]// Proceedings of 7th International Conference on Information Fusion, Stockholm, USA: Elsevier Science, 2004: 555-562.
  • 8Kingsbury N G. The Dual-tree Complex Wavelet Transform: A New Technique for Shift Invariance and Directional Filters [C]// Proceedings of 8th IEEE Digital Signal Processing Workshop, Bryce Canyon, Utah, USA. IEEE: IEEE, 1998: 86-89.
  • 9Kingsbury N G.Shift Invariant Properties of the Dual-tree Complex Wavelet Transform [C]//Proc. ICASSP 99, Phoenix, AZ. USA: IEEE, 1999: 1221-1224.
  • 10Kingsbury N G. The DuN-tree Complex Wavelet Transform with Improved Orthogonality and Symmetry Properties [C]// IEEE International Conference on Image Processing, Vancouver, Canada, 2000. USA: IEEE, 2000: 375-378.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部