期刊文献+

基于轨道不平顺的机器学习方法建模和预测

Modeling and Prediction of Machine Learning Method Based on Track Irregularity
下载PDF
导出
摘要 针对日常运营中火车轨道在列车荷载冲击作用下导致的轨道不平顺问题,使用机器学习方法Prophet算法和基于卷积神经网络的时间卷积网络,对轨道质量指数(TQI)数据进行建模分析和预测。对北京–上海某区段的TQI数据进行分析,并与传统模型ARIMA和三次指数平滑模型进行比较,发现其精确度更高,拟合效果更好。说明了所使用方法处理轨道不平顺数据的有效性。 According to the problem of the track irregularity caused by the impact of train load in daily operation, the machine learning method Prophet algorithm and the temporal convolutional network based on convolutional neural network are used to analyze and predict the track quality index (TQI) data. Analyzing the TQI data of a certain section from Beijing to Shanghai and comparing it with the traditional model ARIMA and Exponential Smoothing models, it is found that the accuracy of Prophet and TCN model is higher and the fitting effect is better. It illustrates the effectiveness of the method that we used to deal with track irregularity data.
出处 《计算机科学与应用》 2021年第10期2417-2427,共11页 Computer Science and Application
  • 相关文献

参考文献8

二级参考文献38

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部