期刊文献+

基于数据增强的小样本字符识别模型 被引量:2

Small Sample Character Recognition Model Based on Data Augmentation
下载PDF
导出
摘要 小样本学习是机器学习的重要研究方向,过去的几十年里,针对小样本学习已经展开了许多研究。针对一些银行支票原始数据积累不足、支票磁条码字符识别准确率低的问题,提出了一种基于数据增强的小样本字符识别方法。通过原始少量样本设计了定制的数据增强方案,有效解决了小样本冷启动的问题,提高模型泛化能力,实现磁条码的准确识别。经测试,该方法的识别准确率达到了95%以上。 Small sample learning is an important research direction of machine learning. In the past decades, many researches have been carried out on small sample learning. Aiming at the problem of insufficient original data accumulation and low character recognition accuracy of magnetic bar code of check in some banks, a small sample character recognition method based on data enhancement is proposed. A customized data enhancement scheme is designed through a small number of original samples, which effectively solves the problem of cold start of small samples, improves the model generalization ability, and realizes the accurate recognition of magnetic bar codes. Through testing, the recognition accuracy of this method is more than 95%.
出处 《计算机科学与应用》 2022年第5期1280-1291,共12页 Computer Science and Application
  • 相关文献

参考文献12

二级参考文献107

  • 1史敏红,李树文,杨志.基于卷积神经网络的智能车牌识别研究[J].电视技术,2021,45(9):89-91. 被引量:2
  • 2Tou J T,Gonzalez R C. Pattern recognition principle[M]. Addison Wesley,Reading,1974.
  • 3Krishma K, Murty M N. Genetic k-means algorithm[J].IEEE Trans on System,Man,and Cybernetics. Part B,1999,29(3):433-439.
  • 4Maulik U,Bandyopadhay S. Genetic algorithm-based clustering technique[J]. Pattern Recognition,2000,33(9):1455-1465.
  • 5BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 6BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 7HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 8BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 9LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 10VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.

共引文献984

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部