期刊文献+

一种基于深度学习日志分析模型的压力测试算法

A Stress Testing Algorithm Based on Deep Learning Log Analysis Model
下载PDF
导出
摘要 软件新系统上线前,常常需要对生产运行的系统开展压力测试,以规避系统因突发巨量客户端访问或生产过程中多用户集中操作,而出现报错及系统崩溃等严重问题。本文提出了一种基于深度学习日志分析模型的压力测试算法,该算法基于现有生产日志数据创建双向长短期记忆循环神经网络(Bi-LSTM)的分析模型,搭建并预测基于生产日志规律的闭环测试场景,模拟预测生产环境的理论测试场景,作为传统基于规则压力测试方法的补充。实验结果表明,使用本文所提双向LSTM分析模型可以有效地模拟生产日志的规律,使得压力测试更贴近真实场景,能有效观察系统运行状况,多维度了解系统性能的极限和缺陷。 Before launching a new software system, stress testing on the production-environment system is necessary. It could avoid serious problems such as system errors and system crashes caused by sudden massive client access or concurrent operations by multiple users during the production process. This paper proposes a deep learning log analysis model-based stress testing algorithm. The algorithm first creates a bi-directional long and short-term memory recurrent neural network (Bi-LSTM) analysis model based on existing production log data, then builds and predicts a closed-loop test scenario based on production log patterns, and finally simulates a theoretical test scenario of the production environment. This method can be served as a supplement to the traditional rule-based stress testing method. The experimental results show that using the proposed bi-directional LSTM analysis model in this paper can effectively simulate the pattern of production logs, which makes the stress testing closer to the real scenario. In this case, developers can effectively observe the system operation condition and understand the limits and defects of the system performance in multiple dimensions.
作者 卢璐 杨子江
出处 《计算机科学与应用》 2023年第5期1109-1118,共10页 Computer Science and Application
  • 相关文献

参考文献11

二级参考文献33

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2Arlitt M, Williamson C. Web Server Workload Characterization: The Search for Invariants[C]//Proc. of ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. [S. l. ]: ACM Press, 1996: 126-137.
  • 3Barford P, Crovella M. Generating Representative Web Workloads for Network and Server Performance Evaluation [C]//Proc. of ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. [S. l. ]: ACM Press, 1998: 151-160.
  • 4LiuZhen, Niclausse N, Villanueva C. Traffic Model and Performance Evaluation of Web Servers [J ]. Performance Evaluation, 2001, 46(2/3): 77- 100.
  • 5Draheim D, Grundy J, Hosking J, et al. Realistic Load Testing of Web Applications [C]//Proc. of Conference on Software Maintenance and Reengineering. [S.l.].. IEEE Press, 2006: 57-70.
  • 6Agrawal R, Srikant R. Mining Sequential Patterns[C]//Proc. of International Conference on Data Engineering. [S. l.]: IEEE Computer Society, 1995: 3-14.
  • 7Pei Jian, Han Jiawei. Mining Sequential Patterns by Patterngrowth: The PrefixSpan Approach [ J ]. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(11):1424-1440.
  • 8李健,王亚民.一种基于Web信息系统的性能测试模型[J].现代图书情报技术,2009(10):45-49. 被引量:4
  • 9钱秀槟,刘国伟,李锦川,蔡磊.Web应用日志分析系统分析与设计[J].计算机安全,2011(6):52-54. 被引量:5
  • 10向培素.两种聚类有效性评价指标的MATLAB实现[J].西南民族大学学报(自然科学版),2013,39(6):1002-1005. 被引量:3

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部