摘要
本文主要探讨了利用OpenCV库实现的车辆检测与识别技术。文章首先概述了车辆检测和识别的关键技术及其基本运作机制,并给出了系统的总体架构。在车辆检测模块中,采用了基于OpenCV的图像预处理实验。在车辆识别模块中,使用了基于卷积神经网络的车辆识别算法,通过深度学习自动提取图像特征,提高车辆检测与识别的准确率。本研究在结论部分总结了研究成果,并针对未来的研究提出了展望。这一研究为车辆检测和识别技术领域带来了创新的观点和方法。
This paper mainly discusses the use of OpenCV library to achieve vehicle detection and recognition technology. In this paper, the key technology and basic operation mechanism of vehicle detection and recognition are summarized, and the overall architecture of the system is given. In the vehicle detection module, OpenCV-based image preprocessing experiments are used. In the vehicle recognition module, the vehicle recognition algorithm based on convolutional neural network is used, and this study summarizes the research results in the conclusion section and puts forward an outlook for future research. This research brings innovative perspectives and methods to the field of vehicle detection and recognition technology.
出处
《计算机科学与应用》
2024年第6期118-122,共5页
Computer Science and Application