期刊文献+

76例乳腺肿瘤超声图像预处理研究

The Research on Preprocessing for the Gray-Scale Ultrasound Breast Tumor Images of 76 Cases
下载PDF
导出
摘要 以76例乳腺肿瘤灰阶超声图像为研究对象,根据医学超声图像的特点及P-M模型的缺点,提出以图像的局部信息确定扩散门限的改进的P-M模型滤波方法,通过采用多种图像预处理算法及上述改进的P-M模型滤波法对76例乳腺肿瘤超声图像进行试验,实验结果显示,改进的P-M模型滤波方法可以更有效的滤除斑点噪声。 This paper mainly focuses on the gray-scale ultrasound breast tumor images. According to the characteristics of ultrasonic image and shortcomings of the P-M model, a modified P-M model filter with local information and spread threshold is proposed. All common pretreatment algorithms are put into experiments and a comparison is made among them. The results show that the modified P-M model filter can more effectively remove the speckle noise.
出处 《生物医学》 2015年第2期9-16,共8页 Hans Journal of Biomedicine
  • 相关文献

参考文献2

二级参考文献21

  • 1朱庆莉,姜玉新,孙强,周炜洵.乳腺癌的彩色多普勒血流分布特征与组织病理学对照研究[J].中国医学影像技术,2005,21(10):1516-1518. 被引量:41
  • 2Gupta N, Swamy M N S, Plotkin E. Despeckling of medical ul- trasound images using data and rate adaptive lossy compression [ J ]. IEEE Trans. on Med. Ima. , 2005, 24 ( 6 ) : 743-754. [ DOI: 10. ll09/TMI. 2005. 847401 ].
  • 3Coup6 P, Hellier P, Kervrann C, et al. Nonlocal means-based speckle filtering for ultrasound Images [ J ]. IEEE Transactions on Image Processing, 2009, 18 (10) : 2221-2229. [ DOI: 10. 1109/TIP. 2009. 2024064 ].
  • 4Lee J. Digital image enhancement and noise filtering by use of lo- cal statistics [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1980, 2(2) : 165-168.
  • 5Frost V, Stiles J, Shanmugan K, et al. A model for radar images and its application to adaptive digital filtering of muhiplicative noise [ J ]. IEEE Trans. Pattern Anal. Mack IntelL , 1982, 4(2) : 157-166.
  • 6Balocco S, Gatta C, Pujol O, et al. SRBF: speckle reducing bilater- al filtering [J]. Ultrasound Med Bid, 2010, 36(8) : 1353-1363.
  • 7Aja-Femndez S, Alberola-L6pez C. On the estimation of the co- efficient of variation for anisotropic diffusion speckle fltering [ J]. IEEE Transactions on Image Processing, 2006, 15 ( 9 ) : 2694- 2701. [DOI: 10. ll09/T1P. 2006. 877360].
  • 8Yu J, Tan J, Wang Y. Ultrasound speckle reduction by a SUSAN- controlled anisotropic diffusion method [ J]. Pattern Reco , 2010, 43: 3083-3092. [DOI: 10. lO16/j, patcog 2010. 04. 006].
  • 9Krissian K, Westin C, Kikinis R, et al. Oriented speckle reduc- ing anisotropic diffusion [ J]. IEEE Transactions Image Process- ing, 2007, 16 ( 5 ) : 1412-1424. [ DOI: 10. ll09/TIP. 2007. 891803 ].
  • 10Deledalle C, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch based weights [ J . IEEE Transactions on Image Processing, 2009, 18 (12) : 2661- 2672. [ DO[.. 10. 1109/TIP. 2009. 2029593.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部