期刊文献+

液体T<sub>2</sub>弛豫时间测量CPMG磁共振脉冲序列实现与应用 被引量:1

The Implementation and Application of CPMG NMR Pulse Sequence for Measuring T<sub>2</sub> Relaxation Time with Clinical MRI Scanner
下载PDF
导出
摘要 目的:探讨在i_Open 0.36T医用磁共振成像(MRI)系统上开发测试液体T2横向弛豫时间Carr-Purcell-Meiboom-Gill (CPMG)序列的可行性与实现方法。方法:pascal语言编辑源程序,可调参数控制激发脉冲波形,相位,幅度,持续时间等属性,回波间隔,数据采集次数,采样点数,采样时间等,编排数据记录方式,满足反演求T2的需要。编译源程序,上机调试实验,测试样品T2,与标准值比较。结果:完成了CPMG序列源代码,编译的可行性文件能够在商业磁共振成像仪上运行,测得的CuSO4溶液样品的T2值为197.479 ms。结论:利用该方法实现的CPMG序列所测样品T2值与标称值一致,满足实际应用需要,利用该方法实现CPMG序列是可行的。 Objective: To implement Carr-Purcell-Meiboom-Gill pulse sequence for T2 relaxation measuring in i_Open 0.36T clinical MRI scanner. Methods: Pascal language is engaged to edit source code. Waveform, phase, amplitude and maintaining time of the excited RF pulse, spacing time of echoes, number of times of data sampling, sampling points, sampling time, and so on are all controlled by sequence parameters. Data logging form was arranged to meet the need of T2 inversion. Source code of sequence was compiled to executable file and is loaded to RINMR software. Comparison was taken between measuring time of sample of CuSO4 solution with our pulse sequence and the given standard value. Results: Source code of CPMG sequence was done as well as the exe file can run with commercial MRI instrumentation. The measuring T2 relaxation time of sample was 197.479 ms. Conclusion: The T2 value computed with our data acquired by our CPMG sequence is consistent with the given nominal value. The CPMG sequence adequately satisfies the practical application and the method can be used to implement the pulse sequence.
出处 《生物医学》 2017年第4期73-78,共6页 Hans Journal of Biomedicine
基金 国家级大学生创新创业训练计划项目(201510439162)。
  • 相关文献

参考文献4

二级参考文献63

  • 1宋国军,仇淑红,祁春利,宋永生,王恩旺.低场MR颅脑急症病例诊断的序列优化[J].中国医学影像技术,2004,20(7):993-995. 被引量:7
  • 2Orpwood R. Computer simulation of neuron pattern processing[J]. J Biomed Eng, 1992, 14(3): 222-228.
  • 3Ogawa S, Lee T, Kay A, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci USA, 1990, 87(24): 9868-9872.
  • 4Frahm J, Merboldt K, Hanicke W, et al. Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation[J]. NMR Biomed, 1994, 7(1-2): 45-53.
  • 5Ogawa S, Menon R, Tank D, et al. Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model[J]. Biophys, 1993, 64(3): 803-812.
  • 6Boxerman J, Bandettini P, Kwong K, et al. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weiged studies in vivo[J]. Magn Reson Med, 1995, 34(1): 4-10.
  • 7Menon RS, Thomas CG, Gati JS. Investigation of BOLD contrast in fMRI using multi-shot EPI[J]. NMR Biomed, 1997, 10(4-5): 179-182.
  • 8Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping[J]. Science, 1996, 272(5261): 551-554.
  • 9Song AW, Wong EC, Tan SG, et al. Diffusion weiged fMRI at 1.5 T[J]. Magn Reson Med, 1996, 35(2): 155-158.
  • 10Di Salle F, Formisano E, Linden DE, et al. Exploring brain function with magnetic resonance imaging[J]. Eur J Radiol, 1999, 30(2): 84-94.

共引文献14

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部