期刊文献+

基于机器学习的RNA甲基化修饰位点预测的研究进展

Research Progress of RNA Methylation Modification Site Prediction Based on Machine Learning
下载PDF
导出
摘要 RNA修饰,特别是RNA甲基化,在人类多种生物活动中起着非常重要的调控作用,最常见的修饰包括N6-腺苷酸甲基化(m6A)、N1-腺苷酸甲基化(m1A)、胞嘧啶羟基化(m5C)等。RNA甲基化修饰位点的准确识别对预测多种人类遗传学疾病以及药物研发发挥着关键作用。随着数据集的大量积累,序列数据的分析需求不断增多,一些基于机器学习的预测方法被开发出来,用于甲基化位点的识别。本工作分别从RNA修饰、数据集来源、预测结果的评估标准以及用于预测的算法模型优缺点等方面进行综述,最后指出了RNA甲基化修饰位点预测未来的研究方向。 RNA modification, especially RNA methylation, plays a very important regulatory role in a variety of human biological activities. The most common modifications include N6-adenylate methylation (m6A), N1-adenylate methylation (m1A), cytosine hydroxylation (m5C), etc. Accurate identification of RNA methylation modification sites is crucial for predicting a variety of human genetic diseases and drug development. With the accumulation of a large number of data sets, the requirements of analyzing sequence data are increasing, and some prediction methods based on machine learning have been developed for the identification of methylation sites. This work reviews RNA modification, data set sources, evaluation criteria for prediction results, and advantages and disadvantages of algorithm models used for prediction, and finally presents the research direction of RNA methylation modification site prediction in the future.
作者 纪璎珊
出处 《计算生物学》 2022年第2期9-15,共7页 Hans Journal of Computational Biology
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部