期刊文献+

直接甲醇燃料电池阳极催化剂及载体的研究现状及展望

Research Progress and Prospect of Anodic Catalysts for Direct Methanol Fuel Cells
下载PDF
导出
摘要 我国十四五规划中将清洁能源摆在重要位置,其中甲醇由于其良好的贮氢能力、价格低廉、来源丰富而被誉为“液态阳光”。在燃料电池领域可以作为氢气的良好替代品,因此被认为是最有应用前景的燃料电池技术之一。直接甲醇燃料电池还具有体积小、质量轻、结构简单、安全性高等特点,非常适用于便携式移动电源,也被认为是最有可能替代锂离子电池的电池。本文综述了直接甲醇燃料电池阳极催化剂的催化机理、催化剂和载体的研究进展,并结合当前研究进展阐述了直接甲醇燃料电池未来的发展趋势。 In China’s 14th Five-Year Plan, clean energy is placed in an important position, among which methanol is known as “liquid sunshine” because of its good hydrogen storage capacity, low price and abundant sources. It can be used as a good substitute for hydrogen in the field of fuel cell, so it is considered as one of the most promising fuel cell technologies. Direct methanol fuel cell also has the characteristics of small size, light weight, simple structure and high safety, which is very suitable for portable mobile power supply, and is also considered as the most likely alternative to lithium ion battery. In this paper, the reaction mechanism, catalyst and support research progress of direct methanol fuel cell are reviewed, and the future development trend of direct methanol fuel cell is described based on the current research progress.
出处 《化学工程与技术》 CAS 2021年第5期283-293,共11页 Hans Journal of Chemical Engineering and Technology
  • 相关文献

参考文献8

二级参考文献36

  • 1Mir,Ghasem,Hosseini,Mehdi,Abdolmaleki,Sajjad,Ashrafpoor.碱性介质中多孔纳米结构镍/钯-镍电极上甲醇电氧化反应(英文)[J].催化学报,2013,34(9):1712-1719. 被引量:4
  • 2Alonso-Vante, N., Malakhov,I. V., Nikitenko, S. G., Savinova, E. R., & Kochubey, D. I. (2002). The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochimica Acta, 47(22), 3807-3814.
  • 3Alonso-Vante, N., & Tributsch, H. (1986). Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 323(2), 431-432.
  • 4Aramata, A., Yamazaki, T., Kunimatsu, K., & Enyo, M. (1987). Electrooxidation of methanol on iridium in acidic solutions: Electrocatalysis and surface characterization by infrared spectroscopy. Journal of Physical and Chemistry, 91(9), 2309-2314.
  • 5Bagotzky, V. S., Vassiliev, Y. B., Khazova, O. A., & Sedova, S. S. (1971). Adsorption and anodic oxidation of methanol on iridium and rhodium electrodes. Electrochimica Acta, 16(7), 913-938.
  • 6Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443(7), 63-66.
  • 7Bogdanoff, P., Herrmann, I., Hilgendorff, M., Dorbandt, I., Fiechter, S., & Tributsch, H. (2004). Probing structural effects of pyrolysed CoTMPP-based electrocatalysts for oxygen reduction via new preparation strategies.Journal of New Materials for Electrochemical Systems, 7, 85-92.
  • 8Breiter, M. W. (1962). Comparative voltammetric study of methanol oxidation and adsorption on noble metal electrodes in perchloric acid solutions. Electrochimica Acta, 8(12), 973 -983.
  • 9Bron, M., Fiechter, S., Hilgendorff, M., & Bogdanoff, P. (2002). Catalysts for oxygen reduction from heat-treated carbon-supported iron phenanthroline complexes. Journal of Applied Electrochemistry, 32( 1 ), 211-216.
  • 10Cao, D., Wieckowski, A., lnukai, J., & Alonso-Vante, N. (2006). Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur.Journal of the Electrochemical Society, 153(5), A869-A874.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部