期刊文献+

氧化铈基复合电解质材料研究进展

Research Progress of Cerium Oxide-Based Composite Electrolyte Materials
下载PDF
导出
摘要 固体氧化物燃料电池(SOFC)中低温化是未来的发展趋势,而单相电解质的离子电导率在600℃以下达不到应用的要求,制备高离子电导率的复合电解质成为发展的方向。本文主要综述了掺杂CeO2-无机盐(碳酸盐,硫酸盐)、掺杂CeO2-(金属)氧化物、掺杂CeO2-钙钛矿三类复合电解质,分析了第二相对CeO2基电解质性能的影响。掺杂CeO2-无机盐由于具有独特的H+/O2−共传导能力从而使复合电解质的电导率得到提高;掺杂CeO2-钙钛矿体系由于提高晶界电导率从而提高总电导率;掺杂CeO2-(金属)氧化物体系中氧化物的加入可以降低烧结温度并提高晶界电导率。研究结果有望为实验上制备性能优异的氧化铈基复合电解质提供理论指导。 Medium-low temperature solid oxide fuel cells is the development trend in the future, but the ionic conductivity of single-phase electrolytes cannot meet the application requirements below 600˚C, so the preparation of composite electrolytes with high ionic conductivity has become the development direction. In this paper, doped CeO2-inorganic salts (carbonate, sulfate), doped CeO2-(metal) oxides, and doped CeO2-perovskite composite electrolytes are reviewed, and the influence of second phase on the performance of CeO2-based electrolytesis analyzed. Due to the unique H+/O2− co-conductivity, the adding of inorganic salt can improve the conductivity of the doped CeO2-inorganic salt composite electrolyte. The increasing total conductivity of doped CeO2- perovskite system may be caused by the increasing the grain boundary conductivity. The addition of oxide in the doped CeO2-(metal) oxide system can decrease the sintering temperature and increase the grain boundary conductivity. The results are expected to provide theoret-ical guidance for the preparation of excellent cerium oxide composite electrolytes.
出处 《化学工程与技术》 2023年第4期304-311,共8页 Hans Journal of Chemical Engineering and Technology
  • 相关文献

参考文献7

二级参考文献75

  • 1[1]Guo Xin. Space-change conduction in yttia and alumina codoped-zirconia [J]. Solid State Ionics, 1997, 96: 247.
  • 2[2]Mori M, Abe T, Itoh H, et al. Cubic stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells [J]. Solid State Ionics, 1994, 74: 152.
  • 3[3]Reiss I, Braunshtein D, Tannhauser D S. Density and Ionic conductivity of sintered (CeO2)0.8(GdO1.5)0.2 [J]. J.Am.Ceram.Soc., 1981, 64: 479.
  • 4[4]Inaba H, Tagawa H. Ceria-based solid electrolytes [J]. Solid State Ionics, 1996, 83 : 1.
  • 5[5]大连工学院编. 无机化学 [M]. 北京: 高等教育出版社, 1978.
  • 6[7]Mishima Y, Mitsuyasu H, Ohtaki M, et al. Solid oxide fuel cell with composite electrolyte consisting of samaria-doped ceria and yttria-stabilized zirconia [J]. J.Electrochem.Soc., 1998, 145(3): 1004
  • 7Steele B C, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861): 345-52.
  • 8Guo Y Q, Yin Y M, Tong Z, et al. Impact of synthesis tech- nique on the structure and electrochemical characteristics of Pr0.6Sr0.4Co0.zFe0.803, (PSCF) cathode material [J]. Solid State lonics, 2011,193(1): 18-22.
  • 9Yin Y M, Xiong M W, Yang N T, et al. Investigation on thermal, electrical, and electrochemical properties of scan- dium-doped Pr0.6Sr04 (Coo.2Fe0.8)jScO3 as cathode for IT-SOFC [J]. International Journal of Hydrogen Energy, 2011, 36(6): 3989-3996.
  • 10Li H, Xia C, Zhu M, et al. Reactive Ce0.sSm0.2OL9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics[J]. Acta Materialia, 2006, 54(3): 721-727.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部