期刊文献+

基于交替方向乘子法的球磨机负荷分布式随机权值神经网络模型 被引量:1

Distributed Random Weight Neural Network Model for Ball Mill Load Based on Alternating Direction Multiplier Method
下载PDF
导出
摘要 针对传统集中式机器学习处理大规模数据存在通信开销大、算法时间和空间复杂度高等问题,基于交替方向乘子法(ADMM),提出一种球磨机负荷分布式随机权值神经网络建模方法,局部网络节点采用正则化随机权值功能连接RVFL网络,全局球磨机负荷模型参数采用分布式优化学习ADMM方法交替迭代更新求解。实验结果表明,基于ADMM-RVFL的球磨机负荷模型在计算速度和精度方面具有相对优越性。 When the traditional centralized machine learning algorithms deal with the large-scale data, there exists high communication overhead, low computational efficiency and large space complexity. A distributed random weights neural network modeling method is used to build ball mill load model based on Alternate Direction Multiplier Method (ADMM). Local network nodes are built using Random Vector Functional-Link (RVFL) network with regularized random weights, and the parameters of global distributed ball mill load model are optimized iteratively to update the solution by using the ADMM method. The experimental results show that the ADMM-RVFL-based ball mill load model has comparative advantages in terms of speed and accuracy.
作者 赵立杰 陈征 张立强 高杨 Lijie Zhao;Zheng Chen;Liqiang Zhang;Yang Gao(Shenyang University of Chemical Technology, Shenyang Liaoning;Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou Jiangsu)
出处 《数据挖掘》 2018年第1期1-8,共8页 Hans Journal of Data Mining
基金 国家自然科学基金资助(项目号:61203102)。
关键词 球磨机负荷 分布式学习 交替方向乘子法 随机权值神经网络 Ball Mill Load Distributed Learning Alternating Direction Multiplier Method Random Weight Neural Network
  • 相关文献

参考文献1

二级参考文献9

  • 1TANG Jian, ZHAO l.i-jie, YUE Heng, et al. Experi mental analysis of wet mill load based on vibration sig- nals of laboratory-scale ball mill shell Source [J]. Min- erals Engineering, 2010, 23(9) : 720 - 730.
  • 2ZENG Y G, FORSSBERG E. Application of vibration ignal measurement for monitoring grinding parameters [J]. Mechanical Systems and Signal Processing, 1994, 8 6) : 703 - 713.
  • 3SCH6LKOPF B,SMOLA A J, MLLER K R. Nonlinear component analysis as a Kernel Eigenvalue Problem [J]. Neuralcomputation, 19 9 8, 10 ( 5 ) : 12 9 9 - 1319.
  • 4HANSEN L K, SALAMON P. Neural network ensem- ble [J]. 1EEE Transaction Pattern Analysis and Machine Intelligence, 1990, 12 (10): 993 1001.
  • 5ZHOU Zhi-hua, WU J, TANG W. Ensembling neural networks: Many could be better than all [J]. Artificial Intelligence, 2002, 137(1/2) : 239 - 263.
  • 6HUANG Guang-bin, ZHU Q Y , SIEW C K . Extreme learning machine: theory and applications [J]. Neuro- computing, 2006, 70(1/2/3): 489-501.
  • 7YUAN I.an, YENG Chai-Soh, HUANG Guang-bin. Ensemble of online sequential extreme learning machine [J]. Neurocomputing, 2009, 72 : 3391 - 3395.
  • 8汤健,赵立杰,岳恒,柴天佑.基于多源数据特征融合的球磨机负荷软测量[J].浙江大学学报(工学版),2010,44(7):1406-1413. 被引量:22
  • 9汤健,赵立杰,岳恒,柴天佑.磨机负荷检测方法研究综述[J].控制工程,2010,17(5):565-570. 被引量:31

共引文献12

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部