期刊文献+

基于机器学习的酒精偏好者特征分析及酗酒倾向预测

Analysis of Alcohol PreferenceCharacteristics and Prediction of Alcohol Abuse Tendency Based on Machine Learning
下载PDF
导出
摘要 饮酒超出适量饮酒或一般社交性饮酒的标准为重度饮酒,重度饮酒无论对个人发展还是对家庭、社会都会产生严重的负面影响,因此,通过特征进行酗酒原因分析和行为预测具有重要意义。特征包括基本信息(教育水平、年龄、性别、居住国、种族)以及五因素人格测量(神经质、外向性、开放性、友善性、严谨性),还有巴瑞特冲动性和冲动感觉寻求,基于机器学习的决策树、朴素贝叶斯、K近邻、支持向量机、逻辑回归多种分类方法进行预测,通过对一个人的基本信息和性格特征的分析来预测是否具有酗酒倾向。对酗酒者的特征进行了分析,外向对饮酒行为有较大影响,开放性高的人更不倾向于饮酒,在其他性格特征中,神经质,友善性,严谨性,巴瑞特冲动性和感觉寻求越高,饮酒可能性越大。 Heavydrinking refers to drinking exceeds the standard of moderate drinking orgeneral social drinking.Heavy drinking has serious negative effects on personaldevelopment and family,so the analysis of the causes of alcohol abuse and thebehavior prediction of heavy drinking are important.Features include basicinformation(educational level,age,gender,country of residence,ethnicity)and five-factor personality measures(Neuroticism,Extraversion,Openness toexperience,Agreeableness,Conscientiousness)as well as Barrett impulsivenessand impulsive sensations seeking.We used machine learning-based decisiontrees,Naive Bayes,K-nearest neighbors,support vector machines,logisticregression and other classification methods to predict and analyze.Then we canpredict whether there is a tendency to alcohol abuse according to a person’sbasic information and personality characteristics.And the characteristics ofalcoholics were analyzed:extroversion had a great influence on drinkingbehavior;people with high openness were less inclined to drinking alcohol,asfor other personality traits,the higher Neuroticism,Agreeableness,Conscientiousness,Barrett impulsiveness and feeling seeking,the greater thepossibility of drinking.
作者 赵萧娜
出处 《数据挖掘》 2019年第3期96-103,共8页 Hans Journal of Data Mining
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部