期刊文献+

基于Stacking算法实现信贷不平衡数据分类 被引量:1

Classification of Credit Imbalance Data Based on Stacking Algorithm
下载PDF
导出
摘要 随着大数据技术在应用层面的日渐普及,机器学习、深度学习相关算法在金融风控行业的应用得到了积极的探索。本文基于开源的信用卡数据(该数据具有样本比例极度不平衡的特点),比较不同采样方法对类别不平衡数据分类结果的影响,并应用集成学习算法Stacking融合多个基分类器训练数据,得到更为稳健的分类模型,有效避免了过拟合现象的发生。 With the increasing popularity of big data technology at the application level, the application of machine learning and deep learning related algorithms in the financial risk control industry has been actively explored. Based on open source credit card data (the data has the characteristics of extremely unbalanced sample ratios), this paper compares the impact of different sampling meth-ods on the classification effect of different classification algorithms in the binary classification prob-lem of unbalanced data, and applies ensemble learning algorithm to fuse multiple base classifier training data. A more robust classification model is obtained, effectively avoiding the occurrence of overfitting.
作者 郑利沙 黄浩
出处 《数据挖掘》 2020年第4期254-260,共7页 Hans Journal of Data Mining
关键词 样本不平衡数据 集成学习 STACKING Sample Unbalanced Data Integration Learning Stacking
  • 相关文献

参考文献2

二级参考文献12

共引文献12

同被引文献23

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部