期刊文献+

基于非侵入式负荷检测与分解的电力数据挖掘

Power Data Mining Based on Non-Intrusive Load Detection and Decomposition
下载PDF
导出
摘要 电力分项计量对优化电力系统管理、提高电力系统稳定性和可靠性、促进科学合理用电、提高电能利用效率、建设节约型社会和缓解电能压力等方面均有重要的现实意义。电力分项计量的一系列技术,是将电器识别作为物联网的一个重要研究方向,要想电器识别数据挖掘提取特征是一个不可或缺的环节,本文首先对给出的原始数据进行预处理,其次基于预处理后的数据提取出各用电设备的运行特征,然后对本文11种用电设备按照工作状态分类,在暂态环境下,分别提取用电设备的电流、电压、瞬时功率和电压噪声的特征;在稳态环境下,分别提取用电设备的有功、无功功率、电压、V-I轨迹等特征,对于建立用电设备的识别系统具有重要意义。 Power sub metering has important practical significance in optimizing power system management, improving power system stability and reliability, promoting scientific and rational use of electricity, improving power utilization efficiency, building a conservation oriented society and relieving power pressure. A series of technologies of electric power sub metering takes electrical equipment identi-fication as an important research direction of Internet of things. In order to identify electrical equipment, data mining and feature extraction is an indispensable link. Firstly, this paper prepro-cesses the original data, then extracts the operation characteristics of electrical equipment based on the preprocessed data, and then classifies 11 kinds of electrical equipment work according to their working conditions. In the transient environment, the features of current, voltage, instanta-neous power and voltage noise are extracted respectively;in the steady-state environment, the features of active power, reactive power, voltage and V-I trajectory are extracted respectively, which is of great significance for the establishment of the identification system of electrical equipment.
作者 王红梅
机构地区 成都理工大学
出处 《数据挖掘》 2021年第2期100-111,共12页 Hans Journal of Data Mining
  • 相关文献

参考文献5

二级参考文献24

  • 1黄巧荣,蔡安宜.发展高校就业指导工作的思路探讨[J].思想理论教育,1996(12):14-15. 被引量:16
  • 2Price W W, Wirgau K A,Murdoch A,et al. Load modeling for power flow and transient stability computer studies[J]. IEEE Transactions on Power Systems, 1988,3(1): 180-187.
  • 3Hart G W. Nonintrusive appliance load monitoring [J]. Proceedings oflEEE, 1992,80(12) : 1870-1891.
  • 4Hart G W. Residential energy monitoring and computerized surveilliance via utility power flows[J]. IEEE Tech nology and Society Magazine, 1989,8(2) ~ 12-16.
  • 5Leeb S B,Shaw S R, Kirtley J L. Transient event detection in spectral envelope estimates for nonintrusive load monitoring [J]. IEEE Transactions on Power Delivery, 1995,10(3): 1200-1210.
  • 6Khan U A, Leeb S B, Lee M C. A multiprocessor for transient event detection[J]. IEEE Transactions on Power Delivery, 1997,12(1) :51-60.
  • 7Drenker S, Kader A. Nonintrusive monitoring of electric loads[J]. IEEE Computer Applications in Power,1999, 12(4) :47-51.
  • 8Cox R, Leeb S B,Shaw S R,et al. Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion [C]//IEEE Applied Power Electronics Conference and Exposition. Dallas, 2006:1751-1757.
  • 9Store R, Price K. Differential evolution:A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11 (4) : 341-359.
  • 10Lawson C L,Hanson R J. Solving Least-Squares Problems [M]. New Jersey : Prentice-Hall, 1974.

共引文献321

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部