期刊文献+

基于核相似性的模糊多核最小二乘支持向量机 被引量:1

Kernel Similarity-Based Fuzzy Multi-Kernel Least Squares Support Vector Machine
下载PDF
导出
摘要 最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)由于同等对待所有样例,从而易受噪声干扰,影响分类性能。模糊LSSVM的提出一定程度上克服了以上问题。本文给出了一种新的样例隶属度计算方法,其在特征空间中,利用每一样例与其他样例核相似性获得隶属度,并将其应用于模糊多核LSSVM (Fuzzy Multi-Kernel LSSVM, FMK-LSSVM),得到具有强鲁棒性的基于核相似性的模糊多核LSSVM。实验结果验证该方法的可行性与有效性。 Least squares support vector machine (LSSVM) is vulnerable to noise and affects the classification performance because it treats all samples equally. Fuzzy LSSVM overcomes the above problems by introducing membership. In this paper, we develop a new method to compute membership. In the feature space, the membership degree is obtained by using the kernel similarity between each sample and other samples, and applied to fuzzy multi-kernel LSSVM (FMK-LSSVM) to obtain a strong robust FMK-LSSVM. Experimental results verify the feasibility and effectiveness of this method.
出处 《数据挖掘》 2022年第2期123-132,共10页 Hans Journal of Data Mining
  • 相关文献

参考文献3

二级参考文献16

  • 1周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 2[1]VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 3[2]CRISTIANINI N,TAYLOR S J.An introduction to support vector machines[M].Cambridge:Cambridge University Press,2000.
  • 4[3]LIN C F,WANG S D.Fuzzy support vector machines[J].IEEE Trans Neural Networks,2002,13 (2):464-471.
  • 5[4]INOUE T,ABE S.Fuzzy support vector machines for pattern classification[A].Proceedings of International Joint Conference on Neural Networks[C].Washington,D.C.,2001.
  • 6[5]HUANG H P,LIU Y H..Fuzzy support vector machines for pattern recognition and data mining[J].International Journal of Fuzzy Systems,2002,4(3):826-835.
  • 7[6]ZHANG X G.Using class-center vectors to build support vector machines[A].Proc IEEE NNSP' 99[C].USA,1999.
  • 8Tari L, Baral C, Kim S. Fuzzy C-means clustering with prior biological knowledge[J]. Journal of Bio- medical Informatics, 2009, 42(1) : 74-81.
  • 9Tong X J, Zhang S M. Similarity and nearness of fuzzy sets [C] // Proceedings of 2005 International Conference on Machine Learning and Cybernetics. New York: IEEE Press, 2005: 2668-2670.
  • 10Zhang H X, Lu J. Semi-supervised fuzzy clustering: a kernel-based approach[J]. Knowledge-based Sys- tems, 2009, 22(6): 477-481.

共引文献23

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部