期刊文献+

基于情感分析的网络舆情主题演化分析 ——以双减政策为例

Internet Public Opinion Theme Evolution Analysis Based on Emotion Analysis—Taking the Double Reduction Policy as an Example
下载PDF
导出
摘要 本文通过python编写爬虫程序,收集有关双减政策的微博评论并通过snowNLP对其情感分析,在积极与消极情感分别通过LDA模型做主题分析,得出了“政策实施效果”、“时间分配”、“教培老师转行”、“疫情开学”、“教育公平”、“教师待遇”、“家长陪伴”、“学业减负”、“兴趣培养”、“人才培养”、“教育改革”等13个主题关键词。通过分析得知,双减政策对于处于义务教育阶段学生的学习模式有较大的改变,也对课外教育机构进行了有效的打压。可以看出双减政策的强势性。从长远的角度看,该项政策有效的推动了人才强国战略的实施,有助于教育的良好发展。 In this paper, a crawler program was written by Python to collect Weibo comments about the double-reduction policy and analyze their emotions through snowNLP. In terms of positive and negative emotions, subject analysis was conducted by LDA model. Thirteen key words were obtained, including “policy implementation effect”, “time distribution”, “teachers changing careers”, “epidemic reopening”, “education equity”, “teachers’ treatment”, “parents’ companionship”, “academic burden reduction”, “interest cultivation”, “talent cultivation” and “education reform”. Through the analysis, the double-reduction policy has greatly changed the learning mode of students in the compulsory education stage, and implemented a strong pressure on extracurricular education institutions. We can see the strength of the double-reduction policy. However, in the long run, this policy effectively promotes the implementation of the strategy of reinvigorating the country with talents and con-tributes to the sound development of education.
作者 金百川 曹旭
机构地区 大连外国语大学
出处 《数据挖掘》 2022年第3期211-219,共9页 Hans Journal of Data Mining
  • 相关文献

参考文献11

二级参考文献152

  • 1李小兵,方永奇,洪永敦,李艳慧.心脑血管病痰证宏观辨证的计量化研究[J].中国中医基础医学杂志,2000,6(5):44-47. 被引量:33
  • 2杨维益,陈家旭,王天芳,李峰,梁嵘.关于中医“证”研究的思考[J].中国医药学报,1996,11(1):4-6. 被引量:16
  • 3钟秉林.国际视野中的创新型人才培养[J].中国高等教育,2007(3):37-40. 被引量:101
  • 4鲁林岳.综合辩证论“减负”[J].教育研究,2007,28(5):69-72. 被引量:72
  • 5Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003, 3 : 993 - 1022.
  • 6Griffiths T L, Steyvers M. A Probabilistic Approach to Semantic Representation// Proc of the 24th Annual Conference of the Cognitive Science Society. Fairfax, USA, 2002 : 381 - 386.
  • 7Griffiths T L, Steyvers M. Prediction and Semantic Association//Becket S, Thrun S, Obermayer K, eds. Advance in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003, 15:11-18.
  • 8Griffiths T L, Steyvers M. Finding Scientific Topics. Proc of the National Academy of Science, 2004, 101 ( Z1 ) : 5228 - 5235.
  • 9Hofmann T. Probabilistic Latent Semantic Analysis// Proc of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999 : 289 - 296.
  • 10Hofmann T. Probabilistic Latent Semantic Indexing//Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley, USA, 1999:50-57.

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部