摘要
随着LNG (液化天然气)作为一种清洁车用能源在全球范围内的推广使用,作为配套的LNG加气站也得到了快速的建设和发展,对于一些位于偏远地区的LNG加气站,有线网络的铺设成本高昂,而无线网络信号无法覆盖,这使得加气站与外界隔离成为一个孤站,信息和数据无法传达到远程监控中心,同时无人值守的LNG加气站在当前人力成本和管理成本较高的情况成为了一种发展趋势。针对偏远地区无人值守的LNG加气站在经营、管理和设备维护上存在困难的问题,本文设计了一种基于低轨卫星的LNG加气站远程管理系统,实现了LNG加气站数据的采集、基于低轨卫星的无线数据传输和数据远程分析、诊断和决策。经过实际调试和应用,验证了设计的可靠性,系统能够准确的采集、传输和分析LNG加气站数据,为偏远地区的LNG加气站的经营、管理和设备维护提供了高效和有力的支持。
With the promotion of LNG (liquefied natural gas) as kind of clean vehicle energy in the world, LNG station, as a supporting for LNG vehicle, has also been built and developed rapidly. For the LNG stations in remote areas, the cost of the cable network is high and the wireless network signals cannot be covered. This makes the gas station isolated from the outside world as a solitary station, and the information and data cannot be conveyed to the remote monitoring center;at the same time, the unattended LNG station has become a trend in the current situation of higher manpower cost and higher management cost. In order to solve the problems of operation, management and equipment maintenance in unattended LNG station, this paper designs a remote management system of LNG station based on LEO satellite, and the data acquisition, data wireless transmission, data remote analysis, diagnosis and decision of LNG station were realized. Through actual debug-ging and application, the reliability of the design is verified. The system can accurately collect, transmit and analyze the data of the LNG station. It provides efficient and powerful support for the operation, management and maintenance of the LNG station in remote areas.
作者
杨鸿兆
周受钦
唐晓勇
Hongzhao Yang;Shouqin Zhou;Xiaoyong Tang(Shenzhen CIMC Intelligent Technology CO., LTD., Shenzhen Guangdong;China International Marine Containers (Group) LTD., Shenzhen Guangdong;Dongguan CIMC Intelligent Technology CO., LTD., Dongguan Guangdong)
出处
《无线通信》
2018年第5期216-225,共10页
Hans Journal of Wireless Communications
基金
深圳市技术攻关项目(项目编号:JSGG20160229173734086)
深圳市技术攻关项目(项目编号:JSGG20170414114406355)
深圳星基装备物联技术工程实验室(深发改[2016]724号)
东莞市引进创新科研团队计划资助(项目编号:201636000200039)。