期刊文献+

悬跨管道间隙比对涡激振动动态响应的影响

Influence of Gap Ratio on Vortex-Induced Vibration Dynamic Response of Free Spanning Pipeline
下载PDF
导出
摘要 为了理清管道悬跨间隙比对涡激振动动态响应的影响,采用数值仿真方法分析了悬跨管道间隙比、海流速度对漩涡脱落频率、涡激振动动态响应的影响。结果表明:间隙比 4时,升力系数振幅中心位置接近0,对周围流场的影响消失。同一间隙比下,升力系数频率随海流速度呈线性变化;不同间隙比下,悬跨管道漩涡脱落频率随约化速度呈线性变化。不同间隙比悬跨管道涡激振动频率锁定时的海流速度相等,锁定后,横向(Z方向)振幅随着间隙比的增大逐渐增大,间隙比达到4后,影响消失。不同间隙比悬跨管道涡激振动一阶模态自振频率锁定时的约化速度相差不大,在(5,7)范围内;间隙比小于2时,对横向(Z方向)振动中心位置的影响非常明显,间隙比达到4后,横向(Z方向)振动中心位置逐渐趋向于0。 In order to clarify the influence of free span gap ratio on vortex-induced vibration (VIV) dynamic response, the effects of free span gap ratio and current velocity on vortex shedding frequency and VIV dynamic response were analyzed by numerical simulation method. The results show that the center of lift coefficient amplitude is a negative value when the clearance ratio is 4. The frequency of lift coefficient varies linearly with a current velocity at the same gap ratio, and the frequency of vortex shedding varies linearly with a reduced velocity at different gap ratios. When the vortex-induced vibration frequency is locked, the velocity of ocean current is equal. After locking, the transverse (Z direction) amplitude increases with the increasing of the gap ratio, and the influence disappears when the gap ratio reaches 4. When the gap ratio is less than 2, the reduction velocity of vortex-induced vibration in the first-order mode of free vibration is similar, and the influence of the gap ratio on the location of the vibration center in the transverse (Z direction) is obvious, when the gap ratio reaches 4, the center of transverse (Z direction) vibration tends to 0.
出处 《仪器与设备》 2021年第4期144-150,共7页 Instrumentation and Equipments
  • 相关文献

参考文献3

二级参考文献24

  • 1孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究[J].水利学报,1994,26(7):43-50. 被引量:16
  • 2Larsen C M,Koushan K,Passano E,et al. Frequency and time domain analysis of vortex-induced vibrations for free span pipelines [C] //Proceedings of OMAE. Oslo, Norway, 2002 : 1-9.
  • 3Fumes G K, Bemten J. On the response of a free span pipeline subjected to ocean currents [J]. Ocean Engineering, 2003,30: 1553-1577.
  • 4Xu Tao, Lauridsen B, Bai Yong. Wave-induced fatigue of multi-span pipelines [J] . Marine Structures, 1999, 12 ( 2 ): 83-106.
  • 5Yttervik R, Larsen C M, Fumes G K, et al. Fatigue from vortex-induced vibrations of free span pipelines using statistics of current speed and direction [C]//Proceedings of OMAE. Cancun, Mexico, 2003: 56-67.
  • 6Shetty N K, Baker M J. Fatigue reliability of tubular joints in offshore structures: Reliability analysis [C] //Proceedings 9th International Conference on Offshore Mechanics and Arctic Engineering. Houston TX, 1990: 231-239.
  • 7Baarholm G S, Larsen C M, Lie H. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibration on riser[J]. Journal of Fluids and Structures, 2006,22: 109-127.
  • 8Wirsching P H, Light M C. Fatigue under wideband random stresses [J]. Journal of Structural Division, ASCE, 1980, 16(ST7): 1593-1607.
  • 9纽兰DE.随机振动与谱分析概论[M].北京:机械工业出版社,1980.22-98.
  • 10Larsen Carl M, Baarholm Gro Sagli, Passano Elizabeth, Koushan Kamran. Non-linear time domain analysis of vortex induced vibrations for free spanning pipelines [A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering [C]. Vancouver, Canada, OMAE, 2004, 207-215.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部