期刊文献+

人工湿地–微生物燃料电池系统应用的发展与展望

Development and Prospect of Application of Constructed Wetland-Microbial Fuel Cell System
下载PDF
导出
摘要 人工湿地–微生物燃料电池系统是一种新型低成本高效益、可持续、环境友好型的污水处理工艺,把人工湿地与微生物燃料电池进行可容性结合以达到高效处理污水的目的。然而,目前国内外对CW-MFC的研究还处于起步阶段。本文对照了近些年人工湿地–微生物燃料电池系统的研究,通过对比电极材料、湿地植物、微生物等指标对CW-MFC系统的影响综述了国内外人工湿地–微生物燃料电池系统现阶段的研究状况。最后提出了人工湿地–微生物燃料电池系统待解决的主要问题。 Constructed wetland-microbial fuel cell system is a new low-cost, high-benefit, sustainable and environment-friendly sewage treatment process, which combines constructed wetland with mi-crobial fuel cell to achieve the purpose of high efficiency sewage treatment. However, at present, the research on CW-MFC at home and abroad is still in its infancy. In this paper, the research of constructed wetland-microbial fuel cell system in recent years was compared, and the research status of constructed wetland-microbial fuel cell system at home and abroad was reviewed by comparing the effects of electrode materials, wetland plants and microorganisms on CW-MFC sys-tem. Finally, the main problems to be solved in constructed wetland-microbial fuel cell system are put forward.
机构地区 玉溪师范学院
出处 《世界生态学》 2020年第4期324-329,共6页 International Journal of Ecology
关键词 微生物燃料电池 人工湿地 电化学 回收 水处理 产电 Microbial Fuel Cell Constructed Wetland Electrochemistry Recovery Water Treatment Electricity Production
  • 相关文献

参考文献4

二级参考文献44

  • 1Strik D P B T B,Timmers R A,Helder M,et al. Microbial solar cells: Applying photosynthetic and electrochemically active or- ganisms[ J]. Trends in Biotechnology,2011,29(1) :41 - 49.
  • 2Clauwaert P, Van Der Ha D, Verstraete W. Energy recovery from energy rich vegetable products with microbial fuel cells [J]. Biotechnology letters, 2008,30(11 ) : 1947 - 1951.
  • 3Kaku N,Yonezawa N,Kodama Y,et al. Plant/Microbe coopera- tion for electricity generation in a rice paddy field[J]. Appled Microbiology Biotechnology, 2008,79(1) :43 - 49.
  • 4Venkata Mohan S,Mohanakrishna G,Chiranjeevi P. Sustainable power generation from gloating macrophytes based ecological mi- croenvirenment through embedded fuel cells along with simulta- neous wastewater treatment [ J ]. Bioresource Technology, 2011, 102(14) :7036 - 7042.
  • 5Timmers R A ,Strik D P B T B,Hamelers H V M,et al. Long -term performance of a plant microbial fuel cell with spartina anglica[ J ]. Applied Microbiology and Biotechnology, 2010, 86 (3) :973 - 981.
  • 6Strik D P B T B,Hamalers H V M, Buisman C J N. Solar energy powered microbial fuel cell with a reversible bioelectrode [ J ]. Environmental Science & Technology,2010,44(1) :532- 537.
  • 7De Schamphelaire L, Verstraete W. Revival of the biological sunlight - to - biogas energy conversion system[ J]. Biotechnolo- gy and Bioengineering, 2009,103 (2) : 296 - 304.
  • 8De Schamphelaire L,Van Den Bossche L, Hai S D,et al. Micro- bial fuel cells generating dectricity from rhizodeposits oif rice plants[ J]. Environmental Science & Technology, 2008,42 (8) : 3053- 3058.
  • 9Helder M,Strik D P B T B, Hamelers H V M, et al. Concur- rent bio- electricity and biomass production in three plant microbial fuel cells using spartina anglica, arundinella anomala and arundo donax[J]. Bioresource Technology,2010, 101 (10) : 3541 - 3547.
  • 10Chen G W,Choi S J,Lee T Het al. Application of biocathede in microbial fuel cells: Cell performance and microbial commu- nity[ J]. Applied Microbiology and Biotechnology, 2008, 79 (3) :379 - 388.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部