期刊文献+

淡水浮游植物与浮游动物化学计量学特征相关性研究

Investing the Stoichiometric Coupling between Phytoplankton and Zooplankton in Freshwater
下载PDF
导出
摘要 本文研究了太子城河浮游植物与浮游动物C、N、P的元素含量,探讨了浮游植物与浮游动物间化学计量学特征的相关性。结果表明,浮游植物C元素含量较高,C:N:P = 156:15.41:1,说明浮游植物生长受N、P共同限制,且作为浮游动物食物质量较差。浮游动物C含量与浮游植物相近,C:N:P = 92.76:11.16:1,N、P元素含量高于浮游植物,表明浮游动物对N、P有富集作用且对P的富集程度较高。将浮游植物与浮游动物元素含量与元素比(C:P、N:P、C:N)进行相关性分析。结果表明,浮游植物与浮游动物元素比差值与浮游植物元素比呈显著正相关关系,线性拟合R2 】0.5,两者间元素水平并不能维持相对一致,说明两者间化学计量学特征随浮游植物元素占比升高产生了不平衡性,即相关性减弱。 To study the correlation of stoichiometric characteristics between phytoplankton and zooplankton, the contents of C, N and P in phytoplankton and zooplankton in Taizicheng River were investigated. The results showed that phytoplankton had a high content of C element (C:N:P = 156:15.41:1), and the growth of phytoplankton was restricted by both N and P, and the quality of phytoplankton as food was poor. The C content of zooplankton was similar to that of phytoplankton (C:N:P = 92.76:11.16:1), and the content of N and P elements was higher than that of phytoplankton, indi-cating that zooplankton enriched N and P and had a higher degree of enrichment of P. The correla-tion analysis of phytoplankton and zooplankton element content and element ratio (C:P, N:P, C:N) was carried out. The results showed that there was a significant positive correlation between phyto-plankton element ratio and phytoplankton element ratio, and the linear fitting R2 was more than 0.5. The element level between phytoplankton element ratio and phytoplankton element ratio was not consistent, indicating that the stoichiometric characteristics between phytoplankton element ratio and phytoplankton element ratio were unbalanced with the increase of phytoplankton ele-ment ratio, that is, the correlation was weakened.
机构地区 华北电力大学
出处 《世界生态学》 2022年第2期163-171,共9页 International Journal of Ecology
  • 相关文献

参考文献3

二级参考文献104

  • 1曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019. 被引量:540
  • 2[1]Allen R E. 1990. The Concise Oxford Dictionary of Current English. 8th ed. Oxford: Clarendon Press.
  • 3[2]Andersen T, Hessen D O. 1991. Carbon, N and P content of freshwater zooplankton. Limnol Oceanogr, 36:807- 814.
  • 4[3]Andersen T. 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks. Berlin: Springer-Verlag.
  • 5[4]Andrew C S, Robins M F. 1969. The effect of phosphorus on the growth and chemical composition of some tropical pasture legumes Ⅰ . Growth and critical percentages of phosphorus.Aust J Agr Res, 20:655-674.
  • 6[5]Andrew C S, Robins M F. 1971. The effect of phosphorus on the growth, chemical composition and critical phosphorus percentages of some tropical pasture grasses. Aust JAgr Res, 22:693 -705.
  • 7[6]Arbuckle K E, Downing J A. 2001. The influence of watershed land use on lake N:P in a predominantly agricultural landscape.Limnol Oceanogr, 46:970-975.
  • 8[7]Atkinson M J, Smith S V. 1983. C: N: P ratios of benthic marine plants. Limnol Oceanogr, 28:568-574.
  • 9[8]Bernan T. 2001. The role of DON and the effect of N:P ratios on occurrence of cyanobacterial blooms: implications from the outgrowth of Aphanizomenon in Lake Kinneret. Limnol Oceanogr, 46:443-447.
  • 10[9]Brett M T. 1993. Comment on "possibility of N or P limitation for planktonic cladocerans: an experimental test" (Urabe and Watanabe) and "nutrient element limitation of zooplankton production" (Hessen). Limnol Oceanogr, 38:1333-1337.

共引文献917

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部