期刊文献+

氧化还原法制备微米多孔银丝及其表面增强拉曼散射研究

Preparation of Micron-Porous Silver Wire by Oxidation-Reduction Method and Its Surface-Enhanced Raman Scattering Review
下载PDF
导出
摘要 多孔金属材料因其比表面积大,表面粗糙度高等特点,被广泛应用于表面增强拉曼散射(SERS)效应和电催化领域。本文采用电化学氧化–还原法,在银丝表面原位构筑微米多孔结构,并通过调节部分参数实现了微孔结构的调控。通过扫描电子显微镜对所制备样品进行微观表征,选择结晶紫为拉曼增强对象对多孔银金属的拉曼增强效应进行了表征。研究结果表明:电化学氧化–还原法制备多孔银丝时,恒流充放电圈数在50圈左右时,多孔银丝表面网状多孔结构最致密均匀、粗糙度最高,SERS效应最好,增强因子达到了3.3 ×105。 Porous metal materials are widely used in the field of surface-enhanced Raman scattering (SERS) and electrocatalysis due to their large specific surface area and high surface roughness. In this paper, the electrochemical oxidation-reduction method was utilized to fabricate the micro-porous structure on the surface of the silver wire in situ, and the micropore structure was controlled by adjusting some parameters. The as-prepared samples were characterized by scanning electron microscopy. The Raman enhancement effect of the porous silver metal was characterized by selecting the crystal violet as the Raman enhancement object. The ability of the porous silver electrode to electrocatalytic oxidation of glucose was characterized by measuring the cyclic voltammogram. The research results show that when the porous silver wire was prepared by electrochemical oxidation-reduction method, the number of galvanostatic charge-discharge cycles was about 50 cycles, the porous network structure of the porous silver wire was the densest and most uniform with the highest roughness, and the SERS effect was the highest. Well, the enhancement factor reached 3.3 ×105.
作者 赵梦阳
出处 《物理化学进展》 2022年第2期62-68,共7页 Journal of Advances in Physical Chemistry
  • 相关文献

参考文献3

二级参考文献98

  • 1史玉升,鲁中良,章文献,黄树槐,陈国清.选择性激光熔化快速成形技术与装备[J].中国表面工程,2006,19(z1):150-153. 被引量:64
  • 2颜永年,齐海波,林峰,何伟,张浩然,张人佶.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87-92. 被引量:30
  • 3Tan YX, Wang F, Kang Y, Zhang J. Dynamic microporous indi?um(III)-4,4'-oxybis(benzoate) framework witb high selectivity for the adsorption of CO2 over N2. Chern Commun, 2011, 47: 770-772.
  • 4Lin lB, Zhang JP, Chen XM. Nonclassical active site for enhanced gas sorption in porous coordination polymer. J Arn Chern Soc, 2010, 132:6654-6656.
  • 5Seo J, Jin N, Chun H. Topologies of metal-organic frameworks based on pyrimidine-5-carboxylate and unexpected gas-sorption selectivity for CO2. Inorg Chern, 2010, 49: 10833-10839.
  • 6Diring S, Furukawa S, Takashima Y, Tsuruoka T, Kitagawa S. Con?trolled multiscale syntbesis of porous coordination polymer in nano/micro regimes. Chern Mater, 2010, 22: 4531-4538.
  • 7Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular syntbesis and the design of new materials. Nature, 2003, 423:705-714.
  • 8Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers. Coord Chern Rev, 2007, 251: 2490-2509.
  • 9Surble S, Millange F, Serre C, DUren T, Latroche M, Bourrelly S, Llewellyn PL, Ferey G. Syntbesis of MIL-102, a chromium carbox?ylate metal-organic framework, with gas sorption analysis. J Arn Che.
  • 10Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu3(TMA)2- (H20)31n. Science, 1999,283: 1148.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部