期刊文献+

风光柴蓄微电网多目标日前优化调度研究

Multi-Objective Day-Ahead Optimization Scheduling Method for Islanded Micro-Grid with PV, Wind Turbine, Diesel Generation and Batteries
下载PDF
导出
摘要 针对孤岛微电网的优化调度问题进行研究,在考虑一般负荷作为可平移负荷,柴油机的治污成本和蓄电池放电循环损耗成本的基础上,采用以运行成本最低和负荷满意度最大为目标函数。通过对风电机组、光伏发电和微电网内重要负荷及一般负荷的日前预测,在满足系统供需平衡的前提下,记及蓄电池充放电功率及SOC范围、风电和光伏最大发电功率、柴油机最大最小发电功率等约束条件。采用混合整数线性优化方法对多目标日前优化调度模型进行求解。仿真结果表明采用该日前优化调度方法,可最小化蓄电池的使用量并充分发挥可再生能源的作用。 The day-ahead optimization scheduling optimization method for islanded micro-grid operation is investigated in this paper. The non-important load as the translatable load, the pollution cost of diesel engine and the cost of battery discharge cycle loss are considered;it employs the minimum running cost and the maximum load satisfaction as the objective function. According to the output power forecast of the important load and non-important load, wind generation, photovoltaic generation, the constraints of the objective function are the balance of the supply and consumption, the maximum and minimum battery charge and discharge power and SOC range, the maximum power of wind generation and photovoltaic, and the maximum and minimum generation power of diesel engine. A mixed integer linear optimization method is used to solve the multi-objective optimal dispatch model. The simulation results show that the optimal scheduling method can minimize the battery usage and give full play to the role of renewable energy.
出处 《电气工程》 2018年第1期83-94,共12页 Journal of Electrical Engineering
  • 相关文献

参考文献6

二级参考文献140

  • 1刘伟达,孟建良,庞春江,蔡媛媛.多Agent在电力系统中的应用[J].电气时代,2004(8):72-74. 被引量:11
  • 2周凤起.中国可再生能源发展战略[J].石油化工技术经济,2005,21(4):1-6. 被引量:16
  • 3金群,李欣然.遗传算法参数设置及其在负荷建模中应用[J].电力自动化设备,2006,26(5):23-27. 被引量:30
  • 4HEINEMANN D, LORENZ E, GIRODO M. Forecasting of Solar Radiation [ EB/OL ]. http ://www. energy-meteorology. de.
  • 5YONA A, SENJYU T, FUNABASHI T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Soeiety General Meeting, 2007.
  • 6COIMBRA C F M, GUO Q H, DELPI.ANQUE J P. The solar power forecasting Initiative[ J]. Solar Energy: Today and Tomorrow, 2008,9 (26).
  • 7BOFINGER S, HEILSCHER G. Solar electricity forecast- approaches and first results[ C ]. 21 st European Phottwoltaic Solar Energy Conference, 2006.
  • 8LORENZANNETTE E, HEINEMANN H. Short term forecasting of solar radiation based on satellite data [ C ], EuroSun 2004.
  • 9WENHAM S R, GREEN M A. Applied Photovoltaics[ C]. Earthscan in the UK and USA, 2007.
  • 10Lasseter R H, Akhil A, Marnay C, et al. Integration ofdislributed energy resources: the CERTS microgrid concept[R]. Berkeley, CA, USA: Consortium for Electric Reliability Technology Solutions,2002.

共引文献1598

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部