期刊文献+

一种基于KSVD-ETF的测量矩阵优化方法

The Optimization Design of Measurement Matrix Based on KSVD-ETF
下载PDF
导出
摘要 压缩感知将数据的采样和压缩同时处理,仅需少量测量就能重建信号。测量矩阵直接影响着信号适应的稀疏度范围和重建效果。为了减小测量矩阵与稀疏变换矩阵的互相干性,提出一种基于KSVD-ETF的测量矩阵和稀疏表达字典联合优化的方法,在对测量矩阵进行ETF优化的同时利用KSVD方法更新优化表达字典,实验结果中利用该方法优化矩阵所得重建信号PSNR有所提高,表明优化测量矩阵的方法在重建效果方面有一定的优势。 Compressive sensing, a novel signal acquisition method, is a joint sensing-compression process which requires a small number of measurements to reconstruct signal. Measurement matrix, a very important part in compressive sensing, directly affects the adaptive sparsity, the required number of measurements and the reconstruct performance of the signal. In order to decrease the mutual coherence between the measurement matrix and sparse transformed matrix and improve the quality of reconstruction, this paper addresses the joint optimization between measurement matrix and sparse dictionary based on the KSVD-ETF. While optimizing the measurement matrix by ETF, we use the KSVD method to update the dictionary. The PSNR of the reconstructed signal is improved with the optimized measurement matrix from the experimental results, indicating that this method of optimizing the measurement matrix has certain advantages in the effect of reconstruction.
出处 《图像与信号处理》 2014年第1期15-18,共4页 Journal of Image and Signal Processing
  • 相关文献

参考文献2

二级参考文献10

  • 1ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 2Ma Chang-zheng, Tat Soon Yeo, Zhang Qun. Three-Di- mensional ISAR Imaging Based on Antenna Array [ J ]. IEEE Transactions on geoscience and remote sensing, 2008,46 (2) :504-514.
  • 3Gianfranco Fornaro, Francesco Serafino and Francesco Soldovieri. Three Dimensional Focusing with Multipass SAR Data [ J ]. IEEE Transactions on geoscience and re- mote sensing, 2003,41 ( 3 ) :507-517.
  • 4Zhang, Q., Zeng, Y. S., and He, Y. Q. Avian Detection and Identification with high-resolution Radar [ C ]. IEEE Radar Conference. Rome, May, 2008:2194-2199.
  • 5E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. , 2007,35(6) : 2313-2351.
  • 6E. Cande~s and M. B. Wakin. An introduction to com- pressive sampling [ J ]. IEEE Signal Process. Mag., 2008,25(2) : 21-30.
  • 7R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are unique and independent of the sparse- hess measure. Aalborg University, Tech. Rep. , 2003.
  • 8S. S. Chen, D. L. Donoho and M. A. Saunders. Atomic decomposition by basis pursuit [ J ]. SIAM Rev., 2001, 43 : 129-159.
  • 9张龙,张磊,邢孟道.一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J].电子与信息学报,2010,32(9):2263-2267. 被引量:18
  • 10全英汇,张磊,刘亚波,张龙,保铮.利用压缩感知的短孔径高分辨ISAR成像方法[J].西安电子科技大学学报,2010,37(6):1022-1026. 被引量:9

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部