期刊文献+

基于变分水平集方法的散乱数据曲面重构研究 被引量:1

Surface Reconstruction from Scattered Data Based on Variational Level Set Method
下载PDF
导出
摘要 工程学和医学等领域中的很多问题进行抽象后可转化为散乱数据的光滑曲面重构问题。在散乱数据附近设定初始轮廓,将初始轮廓间接地表示为水平集函数的零水平集形式,最终将初始活动轮廓的演化转化成水平集函数的演化。定义一个以水平集函数为自变量的能量泛函来度量它与散乱点的逼近程度,利用改进的变分水平集方法演化初始轮廓,达到重构目的。本文中,一是对Heaviside函数进行改进,使初始轮廓能更好的收敛于目标轮廓;二是给出了模型数值计算的具体过程,并以二维实例说明散乱数据重构的效果。 A lot of problems in the field of engineering and medicine after abstraction can be converted into scattered data reconfiguration problems. We set initial contour near the scattered data, expressed as the zero level set of the level set function, which will eventually turn the evolution of initial active contour into the evolution of the level set function. We define an energy functional who takes the level set function as its independent variable, to measure approximation degree with the scattered data, and use the improved variational level set method to evolve the initial contour and achieve reconstruction. In this paper, firstly, putting forward an improved Heaviside function to make the initial contour can better converge in the target contour;secondly, the specific process of numerical calculation model is given, and a two-dimensional example illustrates the effect of the scattered data reconstruction.
机构地区 武汉理工大学
出处 《图像与信号处理》 2016年第2期53-57,共5页 Journal of Image and Signal Processing
  • 相关文献

参考文献2

二级参考文献18

  • 1杨周旺,吴春林,邓建松,陈发来.Specification of Initial Shapes for Dynamic Implicit Curve/Surface Reconstruction[J].Journal of Computer Science & Technology,2006,21(2):249-254. 被引量:2
  • 2徐国良,张琴.计算几何中几何偏微分方程的构造[J].计算数学,2006,28(4):337-356. 被引量:6
  • 3F.Magoules,L.A.Diago,I.Hagiwara,Efficient preconditioning for image reconstruction with radial basis functions[J] .Advances in Engineering Software,2007,38(5):320-327.
  • 4K.Michael,B.Matthew,H.Hugues,Poisson surface reconstruction[C] .Proceedings of the fourth Eurographics symposium on Geometry processing,Eurographics Association,Cagliari,Sardinia,Italy,2006:61-70.
  • 5M.Kazhdan,H.Hoppe,Screened poisson surface reconstruction[J] ,ACM Trans.Graph.,2013,32(3):1-13.
  • 6P.Alliez,D.Cohen-Steiner,Y.Tong,M.Desbrun,Voronoi-based variational reconstruction of unoriented point sets[C] .Proceedings of the fifth Earographics symposium on Geometry processing,Eurographics Association,Barcelona,Spain,2007:39-48.
  • 7H.-K.Zhao,S.Osher,B.Mcrriman,M.Kang,Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method[J] .Computer Vision and Image Understanding,2000,80:295-314.
  • 8O.Yutaka,B.Alexander,A.Marc,T.Greg,S.Hans-Peter,Multi-level partition of unity implicits[C] .ACM Trans.Graph.,2003:463-470.
  • 9G.Gael,G.Markus,Algebraic point set surfaces[C] .ACM SIGGRAPH 2007 papers,ACM,San Diego,California,2007.
  • 10J.D.Boissonnat,F.Cazals,Smooth surface reconstruction via natural neighbour interpolation of distance functions[M] .Computational Geometry:Theory and Applications,2002:185-203.

共引文献7

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部