期刊文献+

基于高光谱成像法对大豆种子的品种分类鉴别

Variety Classification and Identification of Soybean Seeds Based on Hyperspectral Imaging Method
下载PDF
导出
摘要 本文针对东北大豆品种分类鉴别的需求,利用高光谱成像技术获取了6种大豆样品在392.38~1011.01 nm高光谱图像,提取感兴趣(ROI)区域数据,获得大豆种子样品的反射光谱曲线。经过卷积平滑(S-G)预处理,再根据大豆光谱曲线差异选取455.54 nm、479.3 nm、604.04 nm、657.46 nm、705.72 nm、856.89 nm、918.07 nm、953.54 nm作为特征波段,分别输入极限学习机(ELM)和随机森林(RF)模型,得到的分类正确率分别为78.22% 和98.89%,模型预测时间分别为11 s和12 s。研究结果表明,经卷积平滑和高光谱波段优化的特征波段,运用随机森林(RF)模型分析是分类准确率最高、预测时间较快的分类方法,高光谱成像法可有效对大豆品种做出分类鉴别。 According to the needs of soybeanvariety classification and identification in Northeast China, the hyperspectralimages of six soybean samples at 392.38~1011.01 nm were obtained byhyperspectral imaging technology, the region of interest (ROI) data wereextracted, and the reflection spectrum curves of soybean samples were obtained.After convolution smoothing (S-G) pretreatment, 455.54 nm, 479.3 nm, 604.04 nm,657.46 nm, 705.72 nm, 856.89 nm, 918.07 nm and 953.54 nm were selected as thecharacteristic bands according to the difference of soybean spectral curves.The classification accuracy was 78.22% and 98.89% respectively, and theprediction time of the model was 11 s and 12 s respectively. The results showthat the random forest (RF) model analysis is the classification method withthe highest classification accuracy and faster prediction time. Hyperspectralimaging method can effectively classify and identify soybean varieties.
出处 《传感器技术与应用》 2022年第2期177-186,共10页 Journal of Sensor Technology and Application
  • 相关文献

参考文献5

二级参考文献59

  • 1李欣,俞卫琴.基于改进GS-XGBoost的个人信用评估[J].计算机系统应用,2020,29(11):145-150. 被引量:8
  • 2孙啸,逄滨,刘德营,陈坤杰.基于高光谱图像光谱信息的牛肉大理石花纹分割[J].农业机械学报,2013,44(S1):177-181. 被引量:6
  • 3许洪,王向军.多光谱、超光谱成像技术在军事上的应用[J].红外与激光工程,2007,36(1):13-17. 被引量:98
  • 4Yurong Xu, James Ford, Eric Becker, Vangelis Karkaletsis,Fillia Makedon. A BP Neural Network Improvement to Hop --counting for Localization in Wireless Sensor Networks[J]. Studies in Computational Intelligence,2009,166 : 11 -23.
  • 5Lixin Tian, Linlin Gao,Peilin Xu. The Evolutional Prediction Model of Carbon Emissions in China Based on BP Neural Network [J]. International Journal of Nonlinear Science, 2010,10(2) :131 - 140.
  • 6Huawang Shi, Yong Deng. Application of An Improved Ge-netic Algorithms in Artificial Neural Networks[C]. Proceed- ings of the International Symposium on Information Process- ing, 2009 : 263-266.
  • 7Zhiyong LI , Hun JI. Machining Accuracy Prediction of Aero --engine Blade in Electrochemical Machining Based on BP Neural Network[C]. Proceedings of the 2009 International Workshop on Information Security and Application , 2009 244-247.
  • 8Hongwei Sun, Jianeheng Fang , Jianli Li. Temperature Er- rors Modeling for Micro Inertial Measurement Unit Using Multiple Regression Method[C]. Proceedings of the Interna- tional Symposium on Intelligent Information Systems and Applications, 2009 : 411- 415.
  • 9SADHURAM Y, RAMANA MURTHY T V. Simple Multi- ple Regression Model for long range forecasting of Indian Summer Monsoon Rainfall[J]. Meteorol Atmos Phys,2009, 99:17-24.
  • 10Heikki Maaranen,KaisaMiettinen,Antti Penttinen. On initial populations of a genetic algorithm for continuous optimiza- tion problems[J]. J Glob Optim,2007,37:405-436.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部