期刊文献+

半气体爆破试验钢管裂纹扩展研究

Study on Crack Propagation of Steel Pipe in Semi-Gas Blasting Test
下载PDF
导出
摘要 为研究钢管爆破后的整体变形和最终形态,在低温条件下对直径等于1422 mm、壁厚为21.4 mm、长度为11 m的X80钢管在12 MPa压力下进行两次半气体爆破试验(其中,第一次试验:冷却液为85%、气化的氮气为15%,第二次试验:冷却液为90%、气化的氮气为10%)。利用聚能切割器在管道几何中心上侧沿轴线方向爆炸引入500 mm长的贯穿型裂纹(缺陷),使管道在高压作用下发生爆破,通过实测观察管道爆破的相关参数。研究得到了钢管在低温条件下裂纹扩展的速度、方向、长度及分布情况,为天气管线在低温条件下管线防护的工程设计和施工提供参考和借鉴 。 To explore the overall deformation and the final form after the bursting of the steel tube,the a half gas of X80 steel pipes(the diameter is 1422 mm,the wall thickness is 21.4 mm and the length is 11m)blasting tests are carried out under the condition of low temperature and 12 MPa pressure for two times(among them,the first trial:cooling fluid is 85%,gasification nitrogen is 15%,the second test:cooling fluid is 90%,gasification nitrogen is 10%).A 500 mm long perforating crack(defect)is introduced along the axial direction of the explosion along the upper side of the geometric center of the pipeline by using a shaped charge cutter,so that the pipeline will burst under high pressure.Relevant parameters of pipeline blasting are observed through measurement.The velocity,direction,length and distribution of crack propagation of steel pipe under low temperature are obtained,which can provide reference for engineering design and construction of pipeline protection under low temperature.
出处 《矿山工程》 2019年第3期266-274,共9页 Mine Engineering
  • 相关文献

参考文献3

二级参考文献14

  • 1[2]Anon. Cited in EPRG report on toughness for crack arrest in gas pipelines [J]. 3R International, 1983, 22: 98-105.
  • 2[3]Zhuo Zhuang, Yongjin Guo. Analysis of dynamic fracture mechanisms in gas pipelines [J]. Engineering Fracture Mechanics, 1999, 64: 271-289.
  • 3[4]M F Kanninen, P E O'Donoghue, S T Green, et al. The development and verification of dynamic fracture mechanics procedures for flawed fluid containment boundaries [M]. Final Report, 06-9452, Southwest Research Institute, San Antonio, Texas, 1989.
  • 4[5]Z Zhuang. The development of finite element methods for the investigation of dynamic crack propagation in gas pipelines [D]. Ireland: University College Dublin, 1995.
  • 5[6]P E O'Donoghue, S T Green, M F Kanninen, et al. The development of a fluid/structure interaction model for flawed fluid containment boundaries with applications to gas transmission and distribution piping [J]. Computers & Structures, 1991, 38(5/6): 501-513.
  • 6[8]B Eiber, R Eiber, Lorne Carlson, et al. Fracture propagation control for the alliance pipeline [M]. In: Proceedings of the Special Party of ASME, Langfang, 2000. 1-34.
  • 7Maxey WA. Fracture,Initiation,Propagation and Arrest[R].American Gas Association,Catalog No.L30174,1974.
  • 8Makino H,Kubo T,Shiwaku T. Prediction for Crack Propagation and Arrest of Shear Fracture in Ultra-high Pressure Natural Gas Pipelines[J].ISIJ International,2001,(04):381-388.doi:10.2355/isijinternational.41.381.
  • 9Leis BN,Zhu XK,Forte TP. New Approach to Assess Running Fracture Arrest in Pipelines[A].
  • 10Leis BN,Carlson L,Eiber R J. Relationship Between Apparent Charpy Vee-Notch Toughness and the Corresponding Dynamic Crack-Propagation Resistance[A].ASME,1998.723-731.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部